1. |
Hou F, Bi F, Jiao R, et al. Gender differences of depression and anxiety among social media users during the COVID-19 outbreak in China: a cross-sectional study. BMC Public Health, 2020, 20(1): 1648.
|
2. |
Herrman H, Patel V, Kieling C, et al. Time for united action on depression: a Lancet-World psychiatric association commission. Lancet, 2022, 399(10328): 957-1022.
|
3. |
Zhang Xiaowei, Hu Bin, Ma Xu, et al. Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Trans Nanobioscience, 2015, 14(2): 237-247.
|
4. |
Li X, Hu B, Sun S, et al. EEG-based mild depressive detection using feature selection methods and classifiers. Comput Methods Programs Biomed, 2016, 136: 151-161.
|
5. |
梁夏, 王金辉, 贺永. 人脑连接组研究: 脑结构网络和脑功能网络. 科学通报, 2010, 55(16): 1565-1583.
|
6. |
张冰涛, 周文颖, 李延林, 等. 基于脑功能网络的抑郁症识别研究. 生物医学工程学杂志, 2022, 39(1): 47-55.
|
7. |
Peng H, Li C, Chao J, et al. A novel automatic classification detection for epileptic seizure based on dictionary learning and sparse representation. Neurocomputing, 2021, 424: 179-192.
|
8. |
Zhang B, Yan G, Yang Z, et al. Brain functional networks based on resting-state EEG data for major depressive disorder analysis and classification. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 215-229.
|
9. |
Zhang X, Liu J, Shen J, et al. Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine. IEEE Trans Cybern, 2021, 51(9): 4386-4399.
|
10. |
Bruder G E, Bansal R, Tenke C E, et al. Relationship of resting EEG with anatomical MRI measures in individuals at high and low risk for depression. Hum Brain Mapp, 2012, 33(6): 1325-1333.
|
11. |
马江河, 孙颖, 张雪英. 融合语音信号和脑电信号的多模态情感识别. 西安电子科技大学学报, 2019, 46(1): 143-150.
|
12. |
Zhang Xiaowei, Shen Jian, Din Z U, et al. Multimodal depression detection: fusion of electroencephalography and paralinguistic behaviors using a novel strategy for classifier ensemble. IEEE J Biomed Health Inform, 2019, 23(6): 2265-2275.
|
13. |
杨晓莉, 蔺素珍. 一种注意力机制的多波段图像特征级融合方法. 西安电子科技大学学报, 2020, 47(1): 120-127.
|
14. |
Zhang B, Cai H, Song Y, et al. Computer-aided recognition based on decision-level multimodal fusion for depression. IEEE J Biomed Health Inform, 2022, 26(7): 3466-3477.
|
15. |
Zhang X W, Pan J, Shen J, et al. Fusing of electroencephalogram and eye movement with group sparse canonical correlation analysis for anxiety detection. IEEE Trans Affect Comput, 2022, 13(2): 958-971.
|
16. |
Liang S, Kuo C, Hu Y, et al. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE T Instrum Meas, 2012, 61(6): 1649-1657.
|
17. |
He Y, Wei C, Long H, et al. Random weight network-based fuzzy nonlinear regression for trapezoidal fuzzy number data. Applied Soft Computing, 2018, 70: 959-979.
|
18. |
Zhang B, Cao P. Classification of high dimensional biomedical data based on feature selection using redundant removal. Plos One. 2019, 14(4): e0214406.
|
19. |
Cai H S, Zhang X Z, Zhang Y H, et al. A case-based reasoning model for depression based on three-electrode EEG data. IEEE Trans Affect Comput, 2020, 11(3): 383-392.
|
20. |
Blinowska K J, Rakowski F, Kaminski M, et al. Functional and effective brain connectivity for discrimination between Alzheimer's patients and healthy individuals: a study on resting state EEG rhythms. Clinical Neurophysiology, 2017, 128(4): 667-680.
|
21. |
Cai H, Yuan Z, Gao Y, et al. A multi-modal open dataset for mental-disorder analysis. Sci Data, 2022, 9(1): 178.
|
22. |
Song Z, Deng B, Wang J, et al. Biomarkers for Alzheimer's disease defined by a novel brain functional network measure. IEEE Trans Biomed Eng, 2019, 66(1): 41-49.
|
23. |
Peng H, Hu B, Shi Q, et al. Removal of ocular artifacts in EEG an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Inform, 2013, 17(3): 600-607.
|
24. |
Shen J, Zhang Y, Liang H, et al. Exploring the intrinsic features of EEG signals via empirical mode decomposition for depression recognition. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 356-365.
|