1. |
Yu Q, Ma Y, Li Y. Enhancing speech recognition for parkinson’s disease patient using transfer learning technique. J Shanghai Jiaotong Univ Sci, 2022, 27(1): 90-98.
|
2. |
张涛, 蒋培培, 张亚娟, 等. 基于时频混合域局部统计的帕金森病语音障碍分析方法研究. 生物医学工程学杂志, 2021, 38(1): 21-29.
|
3. |
Liu S, Hu S, Xie X, et al. Recent progress in the CUHK dysarthric speech recognition system. IEEE/ACM T Audio Spe, 2021, 29(99): 2267-2281.
|
4. |
梁正友, 黎雨星, 孙宇, 等. 基于多特征组合的构音障碍语音识别. 计算机工程与设计, 2022, 43(2): 567-572.
|
5. |
Revathi A, Nagakrishnan R, Sasikaladevi N. Comparative analysis of dysarthric speech recognition: multiple features and robust templates. Multimedia Tools Appl, 2022, 81(22): 31245-31259.
|
6. |
Calvo I, Tropea P, Viganò M, et al. Evaluation of an automatic speech recognition platform for dysarthric speech. Folia Phoniatr Logo, 2020, 73(5): 1-10.
|
7. |
Al-Qatab B A, Mustafa M B. Classification of dysarthric speech according to the severity of impairment: an analysis of acoustic features. IEEE Access, 2021(9): 18183-18194.
|
8. |
Christabel S, Chellu A, Kannan P. Isolated word recognition for dysarthric patients. Commun Appl Electron, 2016, 5(2): 14-17.
|
9. |
Chandrashekar H M, Karjigi V, Sreedevi N. Investigation of different time-frequency representations for intelligibility assessment of dysarthric speech. IEEE T Neur Sys Reh, 2020, 28(12): 2880-2889.
|
10. |
Asemi A, Salim S, Shahamiri S R, et al. Adaptive neuro-fuzzy inference system for evaluating dysarthric automatic speech recognition (ASR) systems: a case study on mvml-based ASR. Soft comput, 2019, 23(10): 3529-3544.
|
11. |
Selouani S A, Yakoub M S, O’Shaughnessy D. Alternative speech communication system for persons with severe speech disorders. Eurasip J Adv Sig Pr, 2009(2009): 1-12.
|
12. |
郑纯军, 王春立, 贾宁. 语音任务下声学特征提取综述. 计算机科学, 2020, 47(5): 110-119.
|
13. |
Zaidi B F, Boudraa M, Selouani S A, et al. Interface of an automatic recognition system for dysarthric speech. Int J Adv Comput Sci Appl, 2018, 9(9): 560-564.
|
14. |
Ren J, Liu M. An automatic dysarthric speech recognition approach using deep neural networks. Int J Adv Comput Sci Appl, 2017, 8(12): 48-52.
|
15. |
Misbullah A, Lin H H, Chang C Y, et al. Improving acoustic models for dysarthric speech recognition using time delay neural networks// 2020 International Conference on Electrical Engineering and Informatics (ICELTICs). Aceh: IEEE, 2020: 1-4.
|
16. |
Chandrakala S, Rajeswari N. Representation learning based speech assistive system for persons with dysarthria. IEEE T Neur Sys Reh, 2017, 25(9): 1510-1517.
|
17. |
王晴, 白静, 薛珮芸, 等. 听障学生和健听学生鼻韵母声学及运动学的分析研究. 生物医学工程学杂志, 2018, 35(2): 198-205.
|
18. |
Zaidi B F, Selouani S A, Boudraa M, et al. Deep neural network architectures for dysarthric speech analysis and recognition. Neural Comput Appl, 2021, 33(15): 9089-9108.
|
19. |
Mohammed S Y, Sid-ahmed S, Brahim-Fares Z, et al. Improving dysarthric speech recognition using empirical mode decomposition and convolutional neural network. Eurasip J Audio Spee, 2020, 2020(1): 1-7.
|
20. |
Joy N M, Umesh S. Improving acoustic models in torgo dysarthric speech database. IEEE T Neur Sys Reh, 2018, 26(3): 637-645.
|
21. |
Rajeswari N, Chandrakala S. Generative model-driven feature learning for dysarthric speech recognition. Biocybern Biomed Eng, 2016, 36(4): 553-561.
|
22. |
Yue Z, Loweimi E, Christensen H, et al. Acoustic modelling from raw source and filter components for dysarthric speech recognition. IEEE/ACM T Audio Spe, 2022(30): 2968-2980.
|
23. |
Bouchair A, Selouani S A, Amrouche A, et al. Improved empirical mode decomposition using optimal recursive averaging noise estimation for speech enhancement. Circ Syst Signal Pr, 2022, 41(1): 196-223.
|
24. |
Fritsch J, Magimai-Doss M. Utterance verification-based dysarthric speech intelligibility assessment using phonetic posterior features. IEEE Signal Proc Let, 2021(28): 224-228.
|
25. |
Martin L, Matus P, Eva K, et al. Efficient acoustic detector of gunshots and glass breaking. Multimed Tools Appl, 2016, 75(17): 10441-10469.
|
26. |
Li D, Sun L, Xu X, et al. BLSTM and CNN stacking architecture for speech emotion recognition. Neural Process Lett, 2021, 53(6): 4097-4115.
|
27. |
Haase D, Amthor M. Rethinking depthwise separable convolutions: how intra-kernel correlations lead to improved mobileNets// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 14588-14597.
|
28. |
Kim H, Hasegawa-Johnson M, Perlman A, et al. Dysarthric speech database for universal access research// INTERSPEECH 2008. Brisbane: DBLP, 2008: 1741-1744.
|
29. |
张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用. 计算机学报, 2019, 42(3): 453-482.
|
30. |
Shahamiri S R, Salim S. Artificial neural networks as speech recognisers for dysarthric speech: identifying the best-performing set of MFCC parameters and studying a speaker-independent approach. Adv Eng Inform, 2014, 28(1): 102-110.
|
31. |
Shahamiri S R. Speech vision: an end-to-end deep learning-based dysarthric automatic speech recognition system. IEEE T Neur Sys Reh, 2021(29): 852-861.
|