1. |
Monson M, Heuser C, Einerson B D, et al. Evaluation of an external fetal electrocardiogram monitoring system:a randomized controlled trial. American Journal of Obstetrics and Gynecology, 2020, 223(2): 244.
|
2. |
Zwanenburg F, Jongbloed M R M, van Geloven N, et al. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography, 2021, 38(6): 974-981.
|
3. |
Krupa A J D, Dhanalakshmi S, Kumar R. Joint time-frequency analysis and non-linear estimation for fetal ECG extraction. Biomedical Signal Processing and Control, 2022, 75: 103569.
|
4. |
Kang T, Lee S, Lee N, et al. Baseflow separation using the digital filter method: review and sensitivity analysis. Water, 2022, 14(3): 485.
|
5. |
Thunga S S, Muthu R K. Adaptive noise cancellation using improved LMS algorithm. Singapore: Advances in Intelligent Systems and Computing, 2020: 971-980.
|
6. |
Yang C, Dai N, Wang Z, et al. Cardiopulmonary auscultation enhancement with a two-stage noise cancellation approach. Biomedical Signal Processing and Control, 2023, 79: 104175.
|
7. |
Taha L Y, Abdel-Raheem E. Fetal ECG extraction using input-mode and output-mode adaptive filters with blind source separation. Canadian Journal of Electrical and Computer Engineering, 2020, 43(4): 295-304.
|
8. |
Kahankova R, Mikolasova M, Martinek R. Optimization of adaptive filter control parameters for non-invasive fetal electrocardiogram extraction. PloS one, 2022, 17(4): e0266807.
|
9. |
Nadila H, Danudirdjo D, Zakaria H. Fetal heart rate detection algorithm from noninvasive fetal electrocardiogram//International Biomedical Instrumentation and Technology Conference, Yogyakarta: IEEE, 2021: 71-76.
|
10. |
Zhang D, Zhao H, Yang J. Signal denoising of double-beam and double-scattering laser doppler velocimetry based on wavelet layering. Optik, 2020, 202: 163545.
|
11. |
Singh R, Rajpal N, Mehta R. Non-invasive single channel integration model for fetal ECG extraction and sustainable fetal healthcare using wavelet framework. Multimedia Tools and Applications, 2022. DOI: 10.1007/s11042-022-13534-3.
|
12. |
Zhang Y, Yu S. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis. Medical & Biological Engineering & Computing, 2020, 58(2): 419-432.
|
13. |
Mirza S, Bhole K, Singh P. Fetal ECG extraction and QRS detection using independent component analysis// International Colloquium on Signal Processing & Its Applications, Langkawi: IEEE, 2020: 157-161.
|
14. |
陈森涛. 领域自适应算法研究. 广州: 华南理工大学, 2020.
|
15. |
Liu H, Chen D, Sun G. Detection of fetal ECG R wave from single-lead abdominal ECG using a combination of RR time-series smoothing and template-matching approach. IEEE Access, 2019, 7: 66633-66643.
|
16. |
Yuan L, Zhou Z, Yuan Y, et al. An improved FastICA method for fetal ECG extraction. Computational and Mathematical Methods in Medicine, 2018, 2018: 7061456.
|
17. |
Keenan E, Karmakar C, Udhayakumar R K, et al. Detection of fetal arrhythmias in non-invasive fetal ECG recordings using data-driven entropy profiling. Physiological Measurement, 2022, 43(2): 025008.
|
18. |
Silva I, Behar J, Sameni R, et al. Noninvasive fetal ECG: the PhysioNet/computing in cardiology challenge 2013//Computing in Cardiology 2013, Zaragoza: IEEE, 2013: 149-152.
|
19. |
Jezewski J, Matonia A, Kupka T, et al. Determination of fetal heart rate from abdominal signals: evaluation of beat-to-beat accuracy in relation to the direct fetal electrocardiogram. Biomedizinische Technik/Biomedical Engineering, 2012, 57(5): 383-394.
|
20. |
Anisha M, Kumar S S, Nithila E E, et al. Detection of fetal cardiac anomaly from composite abdominal electrocardiogram. Biomedical Signal Processing and Control, 2021, 65: 102308.
|
21. |
Jallouli M, Arfaoui S, Ben Mabrouk A, et al. Clifford wavelet entropy for fetal ECG extraction. Entropy, 2021, 23(7): 844.
|
22. |
吴嘉荣, 陈明, 谭晓林, 等. 胎儿心电图QRS波增宽的临床意义. 江苏实用心电学杂志, 2012, 21(5): 370-371.
|
23. |
Wang H, Li H, Wei X, et al. Recognition of high-specificity hERG K+ channel inhibitor-induced arrhythmia in cardiomyocytes by automated template matching. Microsystems & Nanoengineering, 2021, 7: 24.
|
24. |
Mollakazemi M J, Asadi F, Tajnesaei M, et al. Fetal QRS detection in noninvasive abdominal electrocardiograms using principal component analysis and discrete wavelet transforms with signal quality estimation. Journal of Biomedical Physics & Engineering, 2021, 11(2): 197-204.
|
25. |
Mertes G, Long Y, Liu Z, et al. A deep learning approach for the assessment of signal quality of non-invasive foetal electrocardiography. Sensors, 2022, 22(9): 3303.
|
26. |
Zhong W, Liao L, Guo X, et al. A deep learning approach for fetal QRS complex detection. Physiological Measurement, 2018, 39(4): 045004.
|
27. |
Lee J S, Seo M, Kim S W, et al. Fetal QRS detection based on convolutional neural networks in noninvasive fetal electrocardiogram//International Conference on Frontiers of Signal Processing, Corfu: IEEE, 2018: 75-78.
|
28. |
de Micheaux H L, Resendiz M, Rivet B, et al. Residual convolutional autoencoder combined with a non-negative matrix factorization to estimate fetal heart rate//Annual International Conference of the IEEE Engineering in Medicine & Biology Society, Glasgow: IEEE, 2022: 1292-1295.
|
29. |
Vo K, Le T, Rahmani A M, et al. An efficient and robust deep learning method with 1-D octave convolution to extract fetal electrocardiogram. Sensors, 2020, 20(13): 3757.
|
30. |
韩亮, 蔡文涛, 蒲秀娟, 等. 结合FastICA与EKF的腹部源胎儿心电信号提取. 仪器仪表学报, 2021, 42(7): 116-125.
|