1. |
Li J, Shang L, Lan J, et al. Targeted and intracellular antibacterial activity against s. agalactiae of the chimeric peptides based on pheromone and cell-penetrating peptides. ACS Applied Materials & Interfaces, 2020, 12(40): 44459-44474.
|
2. |
Lazzaro B P, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science, 2020, 368(6490): eaau5480.
|
3. |
Gan B H, Gaynord J, Rowe S M, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society reviews. 2021, 50(13): 7820-7880.
|
4. |
Koehbach J, Craik D J. The vast structural diversity of antimicrobial peptides. Trends in Pharmacological Sciences, 2019, 40(7): 517-528.
|
5. |
Koh J J, Lin S, Beuerman R W, et al. Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids, 2017, 49(10): 1653-1677.
|
6. |
Wang C, Hong T, Cui P, et al. Antimicrobial peptides towards clinical application: delivery and formulation. Adv Drug Deliv Rev, 2021, 175: 113818.
|
7. |
Ting D S J, Beuerman R W, Dua H S, et al. Strategies in translating the therapeutic potentials of host defense peptides. Front Immunol, 2020, 11: 983.
|
8. |
Ramezanzadeh M, Saeedi N, Mesbahfar E, et al. Design and characterization of new antimicrobial peptides derived from aurein 1. 2 with enhanced antibacterial activity. Biochimie, 2021, 181: 42-51.
|
9. |
Schifano N P, Caputo G A. Investigation of the role of hydrophobic amino acids on the structure–activity relationship in the antimicrobial venom peptide ponericin L1. The Journal of Membrane Biology, 2022, 255(4-5): 537-551.
|
10. |
Chen Y, Guarnieri M T, Vasil A I, et al. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 2007, 51(4): 1398-1406.
|
11. |
Zhu X, Ma Z, Wang J, et al. Importance of tryptophan in transforming an amphipathic peptide into a pseudomonas aeruginosa-targeted antimicrobial peptide. Plos One, 2014, 9(12): e114605.
|
12. |
Li W, Separovic F, O'Brien-Simpson N M, et al. Chemically modified and conjugated antimicrobial peptides against superbugs. Chemical Society Reviews. 2021, 50(8): 4932-4973.
|
13. |
Agouridas V, El Mahdi O, Diemer V, et al. Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations. Chemical Reviews, 2019, 119(12): 7328-7443.
|
14. |
Dwivedi R, Aggarwal P, Bhavesh N S, et al. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino acids, 2019, 51(10-12): 1443-1460.
|
15. |
Barbosa M, Vale N, Costa F M, et al. Tethering antimicrobial peptides onto chitosan: optimization of azide-alkyne "click" reaction conditions. Carbohydrate Polymers, 2017, 165: 384-393.
|
16. |
Su Y, Tian L, Yu M, et al. Cationic peptidopolysaccharides synthesized by 'click' chemistry with enhanced broad-spectrum antimicrobial activities. Polymer chemistry, 2017. DOI: r10.1039/c7py00528h.
|
17. |
Kamysz E, Sikorska E, Jaśkiewicz M, et al. Lipidated analogs of the LL-37-derived peptide fragment KR12-structural analysis, surface-active properties and antimicrobial activity. Int J Mol Sci, 2020, 21(3): 887.
|
18. |
Wang C, Yang C, Chen Y C, et al. Rational design of hybrid peptides: a novel drug design approach. Curr Med Sci, 2019, 39(3): 349-355.
|
19. |
Xu L, Shao C, Li G, et al. Conversion of broad-spectrum antimicrobial peptides into species-specific antimicrobials capable of precisely targeting pathogenic bacteria. Scientific Reports, 2020, 10(1): 944.
|
20. |
Choudhury A, Islam S M A, Ghidey M R, et al. Repurposing a drug targeting peptide for targeting antimicrobial peptides against Staphylococcus. Biotechnology Letters, 2020, 42(2): 287-294.
|
21. |
Kim H, Jang J H, Kim S C, et al. Development of a novel hybrid antimicrobial peptide for targeted killing of Pseudomonas aeruginosa. European Journal of Medicinal Chemistry, 2020, 185: 111814.
|
22. |
He T, Qu R, Zhang J. Current synthetic chemistry towards cyclic antimicrobial peptides. Journal of Peptide Science. 2022, 28(6): e3387.
|
23. |
Buckton L K, Rahimi M N, McAlpine S R. Cyclic peptides as drugs for intracellular targets: the next frontier in peptide therapeutic development. Chemistry, 2021, 27(5): 1487-1513.
|
24. |
Jing X, Jin K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Medicinal Research Reviews, 2020, 40(2): 753-810. .
|
25. |
Mwangi J, Yin Y, Wang G, et al. The antimicrobial peptide ZY4 combats multidrug-resistant pseudomonas aeruginosa and acinetobacter baumannii infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26516-26522.
|
26. |
Shi G, Kang X, Dong F, et al. DRAMP 3. 0: an enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Research, 2021, 50(D1): D488-D496.
|
27. |
Li H, Hu Y, Pu Q, et al. Novel stapling by lysine tethering provides stable and low hemolytic cationic antimicrobial peptides. Journal of Medicinal Chemistry, 2020, 63(8): 4081-4089.
|
28. |
Ramazi S, Mohammadi N, Allahverdi A, et al. A review on antimicrobial peptides databases and the computational tools. Database (Oxford), 2022, 2022: baac011.
|
29. |
Boopathi V, Subramaniyam S, Malik A, et al. mACPpred: a support vector machine-based meta-predictor for identification of anticancer peptides. International Journal of Molecular Sciences, 2019, 20(8): 1964.
|
30. |
Sanner M F, Dieguez L, Forli S, et al. Improving docking power for short peptides using random forest. Journal of Chemical Information and Modeling, 2021, 61(6): 3074-3090.
|
31. |
Waghu F H, Gawde U, Gomatam A, et al. A QSAR modeling approach for predicting myeloid antimicrobial peptides with high sequence similarity. Chemical Biology & Drug Design, 2020, 96(6): 1408-1417.
|
32. |
Long T, McDougal O M, Andersen T. GAMPMS: genetic algorithm managed peptide mutant screening. Journal of Computational Chemistry, 2015, 36(17): 1304-10.
|
33. |
Porto W F, Irazazabal L, Alves E S F, et al. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nature communications. 2018, 9(1): 1490.
|
34. |
Di Bonaventura I, Jin X, Visini R, et al. Chemical space guided discovery of antimicrobial bridged bicyclic peptides against Pseudomonas aeruginosa and its biofilms. Chemical Science, 2017, 8(10): 6784-6798.
|
35. |
Di Bonaventura I, Baeriswyl S, Capecchi A, et al. An antimicrobial bicyclic peptide from chemical space against multidrug resistant Gram-negative bacteria. Chemical Communications, 2018, 54(40): 5130-5133.
|
36. |
Heinis C, Rutherford T, Freund S, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides. Nature Chemical Biology, 2009, 5(7): 502-507.
|
37. |
Winkler D F H. SPOT synthesis: the solid-phase peptide synthesis on planar surfaces. Methods in Molecular Biology, 2020, 2103: 151-173.
|
38. |
Hilpert K, Volkmer-Engert R, Walter T, et al. High-throughput generation of small antibacterial peptides with improved activity. Nature Biotechnology, 2005, 23(8): 1008-1012.
|
39. |
Salvagni E, García C, Manresa À, et al. Short and ultrashort antimicrobial peptides anchored onto soft commercial contact lenses inhibit bacterial adhesion. Colloids Surf B: Biointerfaces, 2020, 196: 111283.
|
40. |
Liu L, Zhao L, Liu L, et al. Influence of different aromatic hydrophobic residues on the antimicrobial activity and membrane selectivity of BRBR-NH2 tetrapeptide. Langmuir, 2020, 36(50): 15331-15342.
|
41. |
Yadav V, Misra R. A review emphasizing on utility of heptad repeat sequence as a tool to design pharmacologically safe peptide-based antibiotics. Biochimie, 2021, 191: 126-139.
|
42. |
Wang J, Song J, Yang Z, et al. Antimicrobial peptides with high proteolytic resistance for combating Gram-negative bacteria. Journal of Medicinal Chemistry, 2019, 62(5): 2286-2304.
|
43. |
Xu L, Chou S, Wang J, et al. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides. Amino Acids, 2015, 47(11): 2385-2397.
|
44. |
Zou P, Chen W T, Sun T, et al. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomaterials Science, 2020, 8(18): 4975-4996.
|
45. |
Shen Z, Guo Z, Zhou L, et al. Biomembrane induced in situ self-assembly of peptide with enhanced antimicrobial activity. Biomaterials Science, 2020, 8(7): 2031-2039.
|