1. |
《中国脑卒中防治报告》编写组. 《中国脑卒中防治报告2019》概要. 中国脑血管病杂志, 2020, 17(5): 272-281.
|
2. |
刘莉,王宝兰. 缺血性脑卒中后超早期康复探讨. 中国医刊, 2022, 57(5): 481-484.
|
3. |
刘惠林, 王剑桥, 苏国栋. 感觉输入对偏瘫患者运动功能康复的研究进展. 中日友好医院报, 2021, 35(4): 237-240.
|
4. |
唐晓晓, 洪永锋, 毛晶, 等. 早期不同康复策略对脑卒中患者偏瘫侧上肢功能恢复的影响. 中国康复医学杂志, 2022, 37(6): 779-783.
|
5. |
李宇淇, 曾庆, 黄国志. 上肢康复机器人在脑卒中的临床应用进展. 中国康复理论与实践, 2020, 26(3): 310-314.
|
6. |
Duan G R, High-order fully actuated system approaches: part II. generalized strict-feedback systems. International Journal of System Sciences, 2021, 52(3): 437-454.
|
7. |
Mannella K, Forman G N, Mugnosso M, et al. The effects of isometric hand grip force on wrist kinematics and forearm muscle activity during radial and ulnar wrist joint perturbations. Peer J, 2022, 10: e13495.
|
8. |
Guo Z, Qian Q, Wong K, et al. Altered corticomuscular coherence (CMCoh) pattern in the upper limb during finger movements after stroke. Front Neurol, 2020, 11: 410.
|
9. |
McClelland V M, Cvetkovic Z, Mills K R. Modulation of corticomuscular coherence by peripheral stimuli. Experimental Brain Research, 2012, 219(2): 275-292.
|
10. |
VanGilder J L, Hooyman A, Peterson D S, et al. Post-stroke cognitive impairments and responsiveness to motor rehabilitation: a review. Curr Phys Med Rehabil Rep, 2020, 8(4): 461-468.
|
11. |
Veerbeek J M, Pohl J, Held J P O, et al. External validation of the early prediction of functional outcome after stroke prediction model for independent gait at 3 months after stroke. Front Neurol, 2022, 13: 797791.
|
12. |
Stephen S H. The computational and neural basis of voluntary motor control and planning. Trends in Cognitive Sciences, 2012, 16(11): 541-549.
|
13. |
Fauvet M, Gasq D, Chalard A, et al. Temporal dynamics of corticomuscular coherence reflects alteration of the central mechanisms of neural motor control in post-stroke patients. Front Hum Neurosci, 2021, 15: 682080.
|
14. |
Israely S, Leisman G, Carmeli E. Impaired coordination and recruitment of muscle agonists, but not abnormal synergies or co-contraction, have a significant effect on motor impairments after stroke. Advances in experimental medicine and biology, 2020, 1279: 37-51.
|
15. |
McGeown J P, Hume P A, Kara S, et al. Preliminary evidence for the clinical utility of tactile somatosensory assessments of sport-related mTBI. Sports Medicine Open, 2021, 7(1): 56.
|
16. |
Valeriani M, Mazzone P, Restuccia D, et al. Contribution of different somatosensory afferent input to subcortical somatosensory evoked potentials in humans. Journal of the Neurological Sciences, 2021, 429(S): 118536.
|
17. |
Cop C P, Cavallo G, van ’t Veld R C, et al. Unifying system identification and biomechanical formulations for the estimation of muscle, tendon and joint stiffness during human movement. Progress in Biomedical Engineering, 2021, 3(3): 17.
|
18. |
van 't Veld R C, van Asseldonk E H F, van der Kooij H, et al. Disentangling acceleration-, velocity-, and duration-dependency of the short- and medium-latency stretch reflexes in the ankle plantarflexors. Neurophysiol, 2021, 126(4): 1015-1029.
|
19. |
HarryLeite P, Paquete M, Teixeira J, et al. Acute impact of proprioceptive exercise on proprioception and balance in athletes. Applied Sciences, 2022, 12(2): 830.
|
20. |
O'Keeffe A B, Malekmohammadi M, Sparks H, et al. Synchrony drives motor cortex beta bursting, waveform dynamics, and phase-amplitude coupling in Parkinson's disease. The Journal of neuroscience, 2020, 40(30): 5833-5846.
|
21. |
Miall R C, Rosenthal O, Ørstavik K, et al. Loss of haptic feedback impairs control of hand posture: a study in chronically deaf ferented individuals when grasping and lifting objects. Exp Brain Res, 2019, 237(9): 2167-2184.
|
22. |
Timm F, Kuehn E. A Mechanical stimulation glove to induce hebbian plasticity at the fingertip. Front Hum Neurosci, 2020, 14: 177.
|
23. |
Yeh I L, Holst-Wolf J, Elangovan N, et al. Effects of a robot-aided somatosensory training on proprioception and motor function in stroke survivors. J NeuroengRehabil, 2021, 18(1): 77.
|
24. |
Campfens S F, Schouten A C, van Putten M J, et al. Quantifying connectivity via efferent and afferent pathways in motor control using coherence measures and joint position perturbations. Experimental Brain Research, 2013, 228(2): 141-153.
|
25. |
Hagedoorn L, Zadravec M, Olenšek A, et al. The existence of shared muscle synergies underlying perturbed and unperturbed gait depends on walking speed. Applied Sciences, 2022, 12(4): 2135.
|
26. |
Bhardwaj S, Negi V, Vashista V. Vibratory cue training elicits anticipatory postural responses to an external perturbation. Exp Brain Res, 2022, 240(4): 1105-1116.
|
27. |
Im C H, Kim D H, Yun J E, et al. Compensatory postural responses to backward loss of balance in patients with cerebellar disease. Gait Posture, 2021, 86: 7-12.
|
28. |
Phillips D, dos Santos F V, Santoso M. Sudden visual perturbations induce postural responses in a virtual reality environment. Theoretical Issues in Ergonomics Science, 2022, 23(1): 25-37.
|
29. |
Sever J, Babič J, Kozinc Ž, et al. Postural responses to sudden horizontal perturbations in Tai Chi practitioners. Int. J. Environ. Res, Public Health, 2021, 18(5): 2692.
|
30. |
Beomryong K, Taewoo K. Effect of balance exercise using a combination of isotonics for proprioceptive neuromuscular facilitation on balance and walking ability in patients with hemiplegia due to stroke. Physical Therapy Rehabilitation Science, 2021, 10(4): 470.
|
31. |
Cao Y, DiPiro N D, Brotherton S S, et al. Assistive devices and future fall-related injuries among ambulatory adults with spinal cord injury: a prospective cohort study. Spinal Cord, 2021, 59(7): 747-752.
|
32. |
Haddad Y K, Shakya I, Moreland B L, et al. Injury diagnosis and affected body part for nonfatal fall-related injuries in community-dwelling older adults treated in emergency departments. Journal of Aging and Health, 2020, 32(10): 1433-1442.
|
33. |
Cano P D, Jacobs J V, Inzelberg R, et al. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. Journal of NeuroEngineering and Rehabilitation, 2021, 18(1): 75.
|
34. |
Benjamin E J, Muntner P, Alonso A, et al. Correction to: heart disease and stroke statistics-2019 update: a report from the american heart association. Circulation, 2020, 141(2): e33.
|
35. |
Hu S, Wu G, Wu B, et al. Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Experimental Neurology, 2022, 349: 113960.
|
36. |
Lee C, Kim Y, Kaang B K. The primary motor cortex: the hub of motor learning in rodents. Neuroscience, 2022, 485: 163-170.
|
37. |
Lee J, Chang W H, Kim Y H. Relationship between the corticospinal and corticocerebellar tracts and their role in upper extremity motor recovery in stroke patients. Journal of Personalized Medicine, 2021, 11(11): 1162.
|
38. |
Vlaar M P, Solis-Escalante T, Dewald J P A, et al. Quantification of task-dependent cortical activation evoked by robotic continuous wrist joint manipulation in chronic hemiparetic stroke. Journal of Neuroengineering and Rehabilitation, 2017, 14(1): 30.
|
39. |
Liu J, Sheng Y, Liu H. Corticomuscular coherence and its applications: a review. FronHum Neurosci. 2019, 13: 100.
|
40. |
Liu J, Tan G, Sheng Y, et al. A novel delay estimation method for improving corticomuscular coherence in continuous synchronization events. IEEE Trans Biomed Eng, 2022, 69(4): 1328-1339.
|
41. |
Williams E R, Soteropoulos D S, Baker S N. Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. J Neurophysiol, 2009, 102(2): 1296-1309.
|
42. |
Zandvliet S B, van Wegen E E H, Campfens S F, et al. Position-cortical coherence as a marker of afferent pathway integrity early poststroke: a prospective cohort study. Neurorehabil Neural Repair, 2020, 34(4): 344-359.
|
43. |
Mujunen T, Nurmi T, Piitulainen H. Corticokinematic coherence is stronger to regular than irregular proprioceptive stimulation of the hand. Neurophysiol, 2021, 126(2): 550-560.
|
44. |
Piitulainen H, Illman M, Jousmäki V, et al. Feasibility and reproducibility of electroencephalography-based corticokinematic coherence. Journal of neurophysiology, 2020, 124(6): 1959-1967.
|