1. |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2018, 68(6): 394-424.
|
2. |
El–Serag H B, Rudolph K L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7): 2557-2576.
|
3. |
Yang D W, Jia X B, Xiao Y J, et al. Noninvasive evaluation of the pathologic grade of hepatocellular carcinoma using MCF-3DCNN: a pilot study. BioMed research international, 2019, 2019: 9783106.
|
4. |
Valanarasu J M J, Sindagi V A, Hacihaliloglu I, et al. KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation. IEEE Transactions on Medical Imaging, 2022, 41(4): 965-976.
|
5. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-net: learning where to look for the pancreas. arXiv preprint, 2018, arXiv: 1804.03999.
|
6. |
Hatamizadeh A, Tang Y, Nath V, et al. Unetr: transformers for 3D medical image segmentation//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2022: 574-584.
|
7. |
Cao H, Wang Y, Chen J, et al. Swin-unet: unet-like pure transformer for medical image segmentation. arXiv preprint, 2021, arXiv: 2105.05537.
|
8. |
Qiu Z, Pan Y, Wei J, et al. Predicting symptoms from multiphasic MRI via multi-instance attention learning for hepatocellular carcinoma grading//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 439-448.
|
9. |
Zhou Q, Zhou Z, Chen C, et al. Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images. Computers in biology and medicine, 2019, 107: 47-57.
|
10. |
Zhou Y, Chen H, Li Y, et al. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Medical Image Analysis, 2021, 70: 101918.
|
11. |
Wang P, Patel V M, Hacihaliloglu I. Simultaneous segmentation and classification of bone surfaces from ultrasound using a multi-feature guided CNN//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2018: 134-142.
|
12. |
Chen C, Bai W, Rueckert D. Multi-task learning for left atrial segmentation on GE-MRI//International Workshop on Statistical Atlases and Computational Models of the Heart. Cham: Springer, 2018: 292-301.
|
13. |
Li C F, Xu Y D, Ding X H, et al. MultiR-Net: a novel joint learning network for COVID-19 segmentation and classification. Computers in Biology and Medicine, 2022, 144: 105340.
|
14. |
Chakravarty A, Sivswamy J. A deep learning based joint segmentation and classification framework for glaucoma assesment in retinal color fundus images. arXiv preprint, 2018, arXiv: 1808.01355.
|
15. |
Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization//Proceedings of the IEEE International Conference on Computer Vision. 2017: 618-626.
|
16. |
Liu S, Johns E, Davison A J. End-to-end multi-task learning with attention//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 1871-1880.
|
17. |
Rosiak G, Podgórska J, Rosiak E, et al. CT/MRI LI-RADS v2017–review of the guidelines. Polish Journal of Radiology, 2018, 83: e355-e365.
|
18. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
|
19. |
Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 4700-4708.
|
20. |
Carreira J, Zisserman A. Quo vadis, action recognition? A new model and the kinetics dataset//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 6299-6308.
|
21. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 424-432.
|
22. |
Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV). IEEE, 2016: 565-571.
|