1. |
Zacks J M. Neuroimaging studies of mental rotation: a meta-analysis and review. Journal of Cognitive Neuroscience, 2008, 20(1): 1-19.
|
2. |
Shepard R N, Metzler J. Mental rotation of three-dimensional objects. Science, 1971, 171(3972): 701-703.
|
3. |
黄薇, 马颖玉, 吴剑锋, 等. 复杂环境下不同心理旋转能力人群步行导航行为研究. 人类工效学, 2021, 27(6): 1-10.
|
4. |
唐伟财, 陈善广, 肖毅, 等. 立体信息不同缺失水平下基本认知能力在遥操作任务中的作用研究. 载人航天, 2017, 23(2): 266-273.
|
5. |
朱淑佩, 唐伟财, 王笃明, 等. 基本认知与操作能力对机械臂精细对接任务绩效及人误的影响. 载人航天, 2022, 28(1): 47-54.
|
6. |
van Tetering M, van der Donk M, de Groot R H M, et al. Sex differences in the performance of 7-12 year olds on a mental rotation task and the relation with arithmetic performance. Frontiers in Psychology, 2019, 10: 107.
|
7. |
Nitsche M A, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 2000, 527(3): 633-639.
|
8. |
Reed T, Cohen K R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. Journal of Inherited Metabolic Disease, 2018, 41(6): 1123-1130.
|
9. |
Stagg C J, Nitsche M A. Physiological basis of transcranial direct current stimulation. Neuroscientist, 2011, 17(1): 37-53.
|
10. |
Nikolin S, Loo C K, Bai S, et al. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. NeuroImage, 2015, 117: 11-19.
|
11. |
Fregni F, Boggio P S, Nitsche M, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 2005, 166(1): 23-30.
|
12. |
Martin A K, Kessler K, Cooke S, et al. The right temporoparietal junction is causally associated with embodied perspective-taking. Journal of Neuroscience, 2020, 40(15): 3089-3095.
|
13. |
Živanović M, Paunović D, Konstantinović U, et al. The effects of offline and online prefrontal vs parietal transcranial direct current stimulation (tDCS) on verbal and spatial working memory. Neurobiology of Learning and Memory, 2021, 179: 107398.
|
14. |
Hampstead B M, Brown G S, Hartley J F. Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain Stimulation, 2014, 7(2): 314-324.
|
15. |
Gogos A, Gavrilescu M, Davison S, et al. Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: an fMRI study. Neuropsychologia, 2010, 48(2): 529-535.
|
16. |
Burles F, Lu J, Slone E, et al. Revisiting mental rotation with stereoscopic disparity: a new spin for a classic paradigm. Brain and Cognition, 2019, 136: 103600.
|
17. |
Zhu R, Wang Z, You X. Anodal transcranial direct current stimulation over the posterior parietal cortex enhances three-dimensional mental rotation ability. Neurosci Res, 2021, 170: 208-216.
|
18. |
Foroughi C K, Blumberg E J, Parasuraman R. Activation and inhibition of posterior parietal cortex have bi-directional effects on spatial errors following interruptions. Frontiers in Systems Neuroscience, 2015, 8: 245.
|
19. |
Oldrati V, Colombo B, Antonietti A. Combination of a short cognitive training and tDCS to enhance visuospatial skills: a comparison between online and offline neuromodulation. Brain Research, 2018, 1678: 32-39.
|
20. |
Sur S, Sinha V K. Event-related potential: an overview. Industrial Psychiatry Journal, 2009, 18(1): 70-73.
|
21. |
Kasten F H, Herrmann C S. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Frontiers in Human Neuroscience, 2017, 11: 2.
|
22. |
Omoto S, Kuroiwn Y, Otsuka S, et al. P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images. Clinical Neurophysiology, 2010, 121(3): 386-391.
|
23. |
Datta A, Bansal V, Diaz J, et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2009, 2(4): 201-207.
|
24. |
Hautus M J, Macmillan N A, Creelman C D. Detection theory: a user's guide. 3rd ed. New York: Routledge. 2021.
|
25. |
Hawes Z, Moss J, Caswell B, et al. Effects of mental rotation training on children’s spatial and mathematics performance: a randomized controlled study. Trends in Neuroscience and Education, 2015, 4(3): 60-68.
|
26. |
Jaeggi S M, Buschkuehl M, Jonides J, et al. Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences USA, 2011, 108(25): 10081-10086.
|
27. |
Heil M, Rösler F, Link M, et al. What is improved if a mental rotation task is repeated–the efficiency of memory access, or the speed of a transformation routine?. Psychological Research, 1998, 61(2): 99-106.
|
28. |
Sievertsen H H, Gino F, Piovesan M. Cognitive fatigue influences students’ performance on standardized tests. Proceedings of the National Academy of Sciences USA, 2016, 113(10): 2621-2624.
|
29. |
Neubauer A C, Fink A. Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 2009, 33(7): 1004-1023.
|
30. |
Beste C, Heil M, Konrad C. Individual differences in ERPs during mental rotation of characters: lateralization, and performance level. Brain and Cognition, 2010, 72(2): 238-243.
|
31. |
Griksiene R, Arnatkeviciute A, Monciunskaite R, et al. Mental rotation of sequentially presented 3D figures: sex and sex hormones related differences in behavioural and ERP measures. Scientific Reports, 2019, 9(1): 18843.
|
32. |
Wichary S, Magnuski M, Oleksy T, et al. Neural signatures of rational and heuristic choice strategies: a single trial ERP analysis. Frontiers in human neuroscience, 2017, 11: 401.
|