1. |
Tønnesen J, Inavalli V V G K, Nägerl U V. Super-resolution imaging of the extracellular space in living brain tissue. Cell, 2018, 172(5): 1108-1121.
|
2. |
Shim S H, Xia C L, Zhong G S, et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci U S A, 2012, 109(35): 13978-13983.
|
3. |
Nixon-Abell J, Obara C J, Weigel A V, et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016, 354(6311): aaf3928.
|
4. |
Gustafsson M G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc, 2000, 198(Pt 2): 82-87.
|
5. |
陈廷爱,陈龙超,李慧,等. 结构光照明超分辨光学显微成像技术与展望. 中国光学, 2018, 11(3): 307-328.
|
6. |
张娇,何勤,武泽凯,等. 超分辨显微成像技术在活细胞成像中的应用与发展. 生物化学与生物物理进展, 2021, 48(11): 1301-1315.
|
7. |
Ling C, Zhang C L, Wang M Q, et al. Fast structured illumination microscopy via deep learning. Photonics Research, 2020, 8(8): 1350-1359.
|
8. |
Jin L H, Liu B, Zhao F Q, et al. Deep learning enables structured illumination microscopy with low light levels and enhanced speed. Nat Commun, 2020, 11(1): 1934.
|
9. |
Förster R, Wicker K, Müller W, et al. Motion artefact detection in structured illumination microscopy or live cell imaging. Opt Express, 2016, 24(19): 22121-22124.
|
10. |
Foster R, Muller W, Richter R, et al. Automated distinction of shearing and distortion artefacts in structured illumination microscopy. Opt Express, 2018, 26(16): 20680-20694.
|
11. |
Wen G, Li S M, Wang L B, et al. High-fidelity structured illumination microscopy by point-spread-function engineering. Light Sci Appl, 2021, 10(1): 70.
|
12. |
Huang X X, Fan J C, Li L J, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol, 2018, 36(5): 451-459.
|
13. |
Zhao W S, Zhao S Q, Li L J, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol, 2022, 40(4): 606-617.
|
14. |
Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics Letters, 1994, 19(11): 780-782.
|
15. |
Schermelleh L, Ferrand A, Huser T, et al. Super-resolution microscopy demystified. Nat Cell Biol, 2019, 21(1): 72-84.
|
16. |
Takasaki K T, Ding J B, Sabatini B L. Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys J, 2013, 104(4): 770-777.
|
17. |
Vicidomini G, Hernandez I C, d'Amora M, et al. Gated CW-STED microscopy: a versatile tool for biological nanometer scale investigation. Methods, 2014, 66(2): 124-130.
|
18. |
Hernández I C, Buttafava M, Boso G, et al. Gated STED microscopy with time-gated single-photon avalanche diode. Biomed Opt Express, 2015, 6(6): 2258-2267.
|
19. |
Castello M, Tortarolo G, Hernández I C, et al. Gated-sted microscopy with subnanosecond pulsed fiber laser for reducing photobleaching. Microsc Res Tech, 2016, 79(9): 785-791.
|
20. |
Liu S C, Zhang Z M, Han Y B, et al. Ratiometric photon reassignment based on fluorescence lifetime to improve resolution in pulse STED microscopy. Opt Lett, 2021, 46(13): 3304-3307.
|
21. |
Heine J, Reuss M, Harke B, et al. Adaptive-illumination STED nanoscopy. Proc Natl Acad Sci U S A, 2017, 144(37): 9797-9802.
|
22. |
Schloetel J G, Heine J, Cowman A F, et al. Guided STED nanoscopy enables super-resolution imaging of blood stage malaria parasites. Sci Rep, 2019, 9(1): 4674.
|
23. |
D’Este E, Kamin D, Gottfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep, 2015, 10(8): 1246-1251.
|
24. |
Lukinavicius G, Mitronova G Y, Schnorrenberg S, et al. Fluorescent dyes and probes for super-resolution microscopy of microtubules and tracheoles in living cells and tissues. Chem Sci, 2018, 9(13): 3324-3334.
|
25. |
Wang C G, Taki M, Sato Y, et al. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial criste. Proc Natl Acad Sci U S A, 2019, 116(32): 15817-15822.
|
26. |
Yang X S, Yang Z G, Wu Z Y, et al. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. Nat Commun, 2020, 11(1): 3699.
|
27. |
Balzarotti F, Eilers Y, Gwosch K C, et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 2017, 355(6325): 606-612.
|
28. |
Eilers Y, Ta H, Gwosch K C, et al. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci U S A, 2018, 115(24): 6117-6122.
|
29. |
Gwosch K C, Pape J K, Balzarotti F, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods, 2020, 17(2): 217-224.
|
30. |
Pape J K, Stephan T, Balzarotti F, et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci U S A, 2020, 117(34): 20607-20614.
|
31. |
Liu S, Hoess P, Ries J. Super-resolution microscopy for structural cell biology. Annu Rev Biophys, 2022, 51: 301-326.
|
32. |
Schmidt R, Weihs T, Wurm C A, et al. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun, 2021, 12(1): 1478.
|