1. |
邹茂扬, 杨昊, 潘光晖, 等. 深度学习在医学图像配准上的研究进展与挑战. 生物医学工程学杂志, 2019, 36(4): 677-683.
|
2. |
游森榕, 胡圣烨, 申妍燕, 等. 生成对抗网络在医学图像计算上的进展与展望. 计算机科学与应用, 2021, 11(7): 1949-1961.
|
3. |
肖汉光, 冉智强, 黄金锋, 等. 基于电子计算机断层扫描图像的肺实质分割方法研究进展. 生物医学工程学杂志, 2021, 38(2): 379-386.
|
4. |
Chlap P, Min H, Vandenberg N, et al. A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology, 2021, 65(5): 545-563.
|
5. |
陈英, 郑铖, 易珍, 等. 肝脏及肿瘤图像分割方法综述. 计算机应用研究, 2022, 39(3): 641-650.
|
6. |
Thaha M M, Kumar K P M, Murugan B S, et al. Brain tumor segmentation using convolutional neural networks in MRI images. Journal of Medical Systems, 2019, 43(9): 294.
|
7. |
Ding Y, Yu X, Yang Y. Modeling the probabilistic distribution of unlabeled data for one-shot medical image segmentation//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI. 2021, 35(2): 1246-1254.
|
8. |
Brahim I, Fourer D, Vigneron V, et al. Deep learning methods for MRI brain tumor segmentation: a comparative study//2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA). Istanbul: IEEE, 2019: 1-6.
|
9. |
Afzal S, Maqsood M, Nazir F, et al. A data augmentation-based framework to handle class imbalance problem for Alzheimer’s stage detection. IEEE Access, 2019, 7: 115528-115539.
|
10. |
Karani N, Erdil E, Chaitanya K, et al. Test-time adaptable neural networks for robust medical image segmentation. Medical Image Analysis, 2021, 68: 101907.
|
11. |
Chen C, Hammernik K, Ouyang C, et al. Cooperative training and latent space data augmentation for robust medical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg: Springer, 2021: 149-159.
|
12. |
Novosad P, Fonov V, Collins D L, et al. Accurate and robust segmentation of neuroanatomy in T1‐weighted MRI by combining spatial priors with deep convolutional neural networks. Human Brain Mapping, 2020, 41(2): 309-327.
|
13. |
Pan H, Feng Y, Chen Q, et al. Prostate segmentation from 3D MRI using a two-stage model and variable-input based uncertainty measure//2019 IEEE 16th International Symposium on Biomedical Imaging. Venice: IEEE, 2019: 468-471.
|
14. |
Yang F, Liang F, Lu L, et al. Dual attention-guided and learnable spatial transformation data augmentation multi-modal unsupervised medical image segmentation. Biomedical Signal Processing and Control, 2022, 78: 103849.
|
15. |
Chen Y, Yang X H, Wei Z, et al. Generative adversarial networks in medical image augmentation: a review. Computers in Biology and Medicine, 2022, 144: 105382.
|
16. |
徐峰, 马小萍, 刘立波. 基于生成对抗网络的甲状腺超声图像文本跨模态检索方法. 生物医学工程学杂志, 2020, 37(4): 641-651.
|
17. |
Frid-Adar M, Diamant I, Klang E, et al. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing, 2018, 321: 321-331.
|
18. |
Kwon G, Han C, Kim D. Generation of 3D brain MRI using auto-encoding generative adversarial networks//International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen: Springer, 2019: 118-126.
|
19. |
Chuquicusma M J M, Hussein S, Burt J, et al. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis//2018 IEEE 15th International Symposium on Biomedical Imaging. Washington: IEEE, 2018: 240-244.
|
20. |
Calimeri F, Marzullo A, Stamile C, et al. Biomedical data augmentation using generative adversarial neural networks//International Conference on Artificial Neural Networks. Alghero: Springer, 2017: 626-634.
|
21. |
Bermudez C, Plassard A J, Davis L T, et al. Learning implicit brain MRI manifolds with deep learning. Proceedings of SPIE-the International Society for Optical Engineering, 2018, 10574: 15704L.
|
22. |
Wang Z, Lin Y, Cheng K T T, et al. Semi-supervised mp-MRI data synthesis with stitchlayer and auxiliary distance maximization. Medical Image Analysis, 2020, 59: 101565.
|
23. |
Jiang Y, Chen H, Loew M, et al. COVID-19 CT image synthesis with a conditional generative adversarial network. IEEE Journal of Biomedical and Health Informatics, 2020, 25(2): 441-452.
|
24. |
Wang Q, Zhang X, Zhang W, et al. Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism. IEEE Transactions on Medical Imaging, 2021, 40(9): 2343-2353.
|
25. |
Costa P, Galdran A, Meyer M I, et al. End-to-end adversarial retinal image synthesis. IEEE Transactions on Medical Imaging, 2017, 37(3): 781-791.
|
26. |
Oliveira D A B. Controllable skin lesion synthesis using texture patches, bézier curves and conditional gans//2020 IEEE 17th International Symposium on Biomedical Imaging. Lowa: IEEE, 2020: 1798-1802.
|
27. |
Zhang T, Cheng J, Fu H, et al. Noise adaptation generative adversarial network for medical image analysis. IEEE Transactions on Medical Imaging, 2019, 39(4): 1149-1159.
|
28. |
储珺, 林文杰, 徐鹏. 目标检测中特征不匹配问题研究进展. 南昌航空大学学报:自然科学版, 2021, 35(3): 1-8.
|
29. |
张颖麟, 胡衍, 东田理沙, 等. 生成对抗式网络及其医学影像应用研究综述. 中国图象图形学报, 2022, 27(3): 687-703.
|
30. |
Kong L, Lian C, Huang D, et al. Breaking the dilemma of medical image-to-image translation. Advances in Neural Information Processing Systems, 2021, 34: 1964-1978.
|
31. |
Luo Y, Nie D, Zhan B, et al. Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion. Neurocomputing, 2021, 452: 63-77.
|
32. |
Xie G, Wang J, Huang Y, et al. FedMed-GAN: federated domain translation on unsupervised cross-modality brain image synthesis. arXiv preprint, 2022, arXiv: 2201.08953.
|
33. |
Xie X, Chen J, Li Y, et al. MI2GAN: generative adversarial network for medical image domain adaptation using mutual information constraint//International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima: Springer, 2020: 516-525.
|
34. |
Yu B, Zhou L, Wang L, et al. Ea-GANs: edge-aware generative adversarial networks for cross-modality MR image synthesis. IEEE Transactions on Medical Imaging, 2019, 38(7): 1750-1762.
|
35. |
Yang X, Lin Y, Wang Z, et al. Bi-modality medical image synthesis using semi-supervised sequential generative adversarial networks. IEEE Journal of Biomedical and Health Informatics, 2019, 24(3): 855-865.
|
36. |
Gilbert A, Marciniak M, Rodero C, et al. Generating synthetic labeled data from existing anatomical models: an example with echocardiography segmentation. IEEE Transactions on Medical Imaging, 2021, 40(10): 2783-2794.
|
37. |
Han C, Rundo L, Araki R, et al. Combining noise-to-image and image-to-image GANs: brain MR image augmentation for tumor detection. IEEE Access, 2019, 7: 156966-156977.
|
38. |
Chen C, Qin C, Qiu H, et al. Realistic adversarial data augmentation for MR image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima: Springer, 2020: 667-677.
|
39. |
Chaitanya K, Karani N, Baumgartner C F, et al. Semi-supervised task-driven data augmentation for medical image segmentation. Medical Image Analysis, 2021, 68: 101934.
|
40. |
Chaitanya K, Karani N, Baumgartner C F, et al. Semi-supervised and task-driven data augmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention. Hongkong: Springer, 2020: 667-677.
|
41. |
Cheng K, Iriondo C, Calivá F, et al. Adversarial policy gradient for deep learning image augmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention. Shenzhen: Springer, 2019: 450-458.
|
42. |
Gao Y, Tang Z, Zhou M, et al. Enabling data diversity: efficient automatic augmentation via regularized adversarial training//International Conference on Information Processing in Medical Imaging. Virtual Event: Springer, 2021: 85-97.
|