1. |
Kornej J, Huang Q, Preis S R, et al. Temporal trends in cause-specific mortality among individuals with newly diagnosed atrial fibrillation in the Framingham Heart Study. BMC Med, 2021, 19(1): 170.
|
2. |
中华医学会心电生理和起搏分会, 中国医师协会心律学专业委员会, 中国房颤中心联盟心房颤动防治专家工作委员会. 心房颤动: 目前的认识和治疗建议(2021). 中华心律失常学杂志, 2022, 26(1): 15-88.
|
3. |
马凌, 马明仁, 张鹏, 等. 房颤触发机制研究新进展. 实用心电学杂志, 2021, 30(6): 392-397.
|
4. |
Bai J, Zhao J, Ni H, et al. Editorial: Diagnosis, monitoring, and treatment of heart rhythm: new insights and novel computational methods. Front Physiol, 2023, 14: 1272377.
|
5. |
Mikhailov A V, Kalyanasundaram A, Li N, et al. Comprehensive evaluation of electrophysiological and 3D structural features of human atrial myocardium with insights on atrial fibrillation maintenance mechanisms. J Mol Cell Cardiol, 2021, 151: 56-71.
|
6. |
娄洋, 周鑫斌, 毛威. 心电成像技术临床应用展望. 心电与循环, 2021, 40(6): 559-564.
|
7. |
Ehrlich M P, Laufer G, Coti I, et al. Noninvasive mapping before surgical ablation for persistent, long-standing atrial fibrillation. J Thorac Cardiovasc Surg, 2019, 157(1): 248-256.
|
8. |
Guillem M S, Climent A M, Millet J, et al. Noninvasive localization of maximal frequency sites of atrial fibrillation by body surface potential mapping. Circ Arrhythm Electrophysiol, 2013, 6(2): 294-301.
|
9. |
Ramanathan C, Ghanem R N, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med, 2004, 10(4): 422-428.
|
10. |
Hong S, Zhou Y, Shang J, et al. Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Comput Biol Med, 2020, 122: 103801.
|
11. |
Qu R, Wang Z, Wang S, et al. Interictal electrophysiological source imaging based on realistic epilepsy head model in presurgical evaluation: A prospective study. Chin J Electr, 2023, 9(1): 61-70.
|
12. |
Clayton R H, Aboelkassem Y, Cantwell C D, et al. An audit of uncertainty in multi-scale cardiac electrophysiology models. Philos Trans Royal Soc, 2020, 378(2173): 20190335.
|
13. |
Nagel C, Espinosa C B, Gillette K, et al. Comparison of propagation models and forward calculation methods on cellular, tissue and organ scale atrial electrophysiology. IEEE Trans Biomed Eng, 2023, 70(2): 511-522.
|
14. |
Morotti S, Liu C, Hegyi B, et al. Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications. Sci Adv, 2021, 7(47): eabg0927.
|
15. |
Lei C L, Clerx M, Beattie K A, et al. Rapid characterization of hERG channel kinetics II: Temperature dependence. Biophys J, 2019, 117(12): 2455-2470.
|
16. |
Fastl T E, Tobon-Gomez C, Crozier A, et al. Personalized computational modeling of left atrial geometry and transmural myofiber architecture. Med Image Anal, 2018, 47: 180-190.
|
17. |
Corrado C, Williams S, Karim R, et al. A work flow to build and validate patient specific left atrium electrophysiology models from catheter measurements. Med Image Anal, 2018, 47: 153-163.
|
18. |
Biasi N, Seghetti P, Mercati M, et al. A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries. PLoS One, 2023, 18(6): e0286577.
|
19. |
Sovilj S, Čeperič V, Magjarevič R. 3D cardiac electrical activity model. Automatika, 2016, 57(2): 540-548.
|
20. |
Franzone P C, Guerri L. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the Eikonal model. Math Biosci, 1993, 113(2): 145-209.
|
21. |
Neic A, Campos F O, Prassl A J, et al. Efficient computation of electrograms and ECGs in human whole heart simulations using a Reaction-Eikonal model. J Comput Phys, 2017, 346: 191-211.
|
22. |
Gonzalez Herrero M E, Kuehn C, Tsaneva-Atanasova K. Reduced models of cardiomyocytes excitability: Comparing Karma and FitzHugh–Nagumo. Bull Math Biol, 2021, 83(8): 88.
|
23. |
Khan R, Ng K T. Numerical study of POD-Galerkin-DEIM reduced order modeling of cardiac monodomain formulation. Biomed Phys Eng Express, 2021, 8(1): 015012.
|
24. |
Han B, Trew M L, Zgierski-Johnston C M. Cardiac conduction Velocity, remodeling and arrhythmogenesis. Cells, 2021, 10(11): 2923.
|
25. |
Pagani S, Dede’ L, Frontera A, et al. A computational study of the electrophysiological substrate in patients suffering from atrial fibrillation. Front Physiol, 2021, 12: 673612.
|
26. |
Salinet J, Molero R, Schlindwein F S, et al. Electrocardiographic imaging for atrial fibrillation: A perspective from computer models and animal experiments to clinical value. Front Physiol, 2021, 12: 653013.
|
27. |
Wang T, Karel J, Bonizzi P, et al. Influence of the Tikhonov regularization parameter on the accuracy of the inverse problem in electrocardiography. Sensors, 2023, 23(4): 1841.
|
28. |
Karoui A, Bear L, Migerditichan P, et al. Evaluation of fifteen algorithms for the resolution of the electrocardiography imaging inverse problem using ex-vivo and in-silico data. Front Physiol, 2018, 9: 1708.
|
29. |
Chen R, Li J, Wu J. A robust algorithm for selecting optimal regularization parameter based on bilateral accumulative area// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin: IEEE, 2019: 4893-4896.
|
30. |
Yao B, Yang H. Spatiotemporal regularization for inverse ECG modeling. IISE Trans Healthc Syst Eng, 2021, 11(1): 11-23.
|
31. |
Lan S, Li S, Pasha M. Bayesian spatiotemporal modeling for inverse problems. Stat Comput, 2023, 33: 89.
|
32. |
贺高, 蒋明峰, 郑俊褒, 等. 卷积神经网络在心电逆问题中的应用. 计算机工程与应用, 2019, 55(1): 123-127,265.
|
33. |
Bacoyannis T, Ly B, Cedilnik N, et al. Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization. Europace, 2021, 23(Supplement_1): i55-i62.
|
34. |
Lee K-S, Jung S, Gil Y, et al. Atrial fibrillation classification based on convolutional neural networks. BMC Medical Inform Decis Mak, 2019, 19(1): 206.
|
35. |
Xia Q, Yao Y, Hu Z, et al. Automatic 3D atrial segmentation from GE-MRIs using volumetric fully convolutional networks// Pop M, Sermesant M, Zhao J, et al. Statistical atlases and computational models of the heart. Atrial segmentation and LV quantification challenges. Cham: Springer International Publishing, 2019, 11395: 211-220.
|
36. |
Puybareau É, Zhao Z, Khoudli Y, et al. Left atrial segmentation in a few seconds using fully convolutional network and transfer learning// Pop M, Sermesant M, Zhao J, et al. Statistical atlases and computational models of the heart. Atrial segmentation and LV quantification challenges. Cham: Springer International Publishing, 2019, 11395: 339-347.
|
37. |
Liu Y, Dai Y, Yan C, et al. Deep learning based method for left atrial segmentation in GE-MRI// Pop M, Sermesant M, Zhao J, et al. Statistical atlases and computational models of the heart. Atrial segmentation and LV quantification challenges. Cham: Springer International Publishing, 2019, 11395: 311-318.
|
38. |
McGillivray M F, Cheng W, Peters N S, et al. Machine learning methods for locating re-entrant drivers from electrograms in a model of atrial fibrillation. Royal Soc Open Sci, 2018, 5(4): 172434.
|
39. |
Zolotarev A M, Hansen B J, Ivanova E A, et al. Optical mapping-validated machine learning improves atrial fibrillation driver detection by multi-electrode mapping. Circ Arrhythm Electrophysiol, 2020, 13(10): e008249.
|
40. |
Alhusseini M I, Abuzaid F, Rogers A J, et al. Machine learning to classify intracardiac electrical patterns during atrial fibrillation: Machine learning of atrial fibrillation. Circ Arrhythm Electrophysiol, 2020, 13(8): e008160.
|
41. |
Liao S, Ragot D, Nayyar S, et al. Deep learning classification of unipolar electrograms in human atrial fibrillation: Application in focal source mapping. Front Physiol, 2021, 12: 704122.
|
42. |
Ríos-Muñoz G R, Fernández-Avilés F, Arenal Á. Convolutional neural networks for mechanistic driver detection in atrial fibrillation. Int J Mol Sci, 2022, 23(8): 4216.
|
43. |
Weder M, Hegemann D, Amberg M, et al. Embroidered electrode with silver/titanium coating for long-term ECG monitoring. Sensors, 2015, 15(1): 1750-1759.
|
44. |
Yang G, Hu Y, Guo W, et al. Tunable hydrogel electronics for diagnosis of peripheral neuropathy. Adv Mater, 2023: e2308831.
|
45. |
Gander L, Krause R, Multerer M, et al. Space–time shape uncertainties in the forward and inverse problem of electrocardiography. Int J Numer Method Biomed Eng, 2021, 37(10): e3522.
|
46. |
Bergquist J, Rupp L, Zenger B, et al. Body surface potential mapping: Contemporary applications and future perspectives. Hearts, 2021, 2(4): 514-542.
|
47. |
Ghazarian A, Zheng J, Struppa D, et al. Assessing the reidentification risks posed by deep learning algorithms applied to ECG data. IEEE Access, 2022, 10: 68711-68723.
|
48. |
Huang P, Guo L, Li M, et al. Practical privacy preserving ECG-based authentication for IoT-based healthcare. IEEE Internet Things J, 2019, 6(5): 9200-9210.
|