1. |
Talwar S K, Xu S, Hawley E, et al. Rat navigation guided by remote control. Nature, 2002, 417(6884): 37-38.
|
2. |
Chen Sicong, Zhou Hong, Guo Songchao, et al. Optogenetics based rat–robot control: optical stimulation encodes “stop” and “escape” commands. Ann Biomed Eng, 2015, 43: 1851-1864.
|
3. |
Sina Khajei, Vahid Shalchyan, Mohammad Reza Daliri. Ratbot navigation using deep brain stimulation in ventral posteromedial nucleus. Bioengineered, 2019, 10(1): 250-260.
|
4. |
Bozkurt A, Gilmour R, Stern D, et al. MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control// 2008 International Conference on Micro Electro Mechanical Systems (MEMS). Tucson: IEEE, 2008: 160-163.
|
5. |
Cao Feng, Zhang Chao, Choo Yuhao, et al. Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait. J R Soc Interface, 2016, 13(116): 20160060.
|
6. |
苏学成, 槐瑞托, 杨俊卿, 等. 控制动物机器人运动行为的脑机制和控制方法. 中国科学, 2012, 42(9): 1130-1146.
|
7. |
Wang Hui, Yang Junqing, Lv Changzhi, et al. Intercollicular nucleus electric stimulation encoded “walk forward” commands in pigeons. Anim Biol, 2018, 68(2): 213-225.
|
8. |
Kim C H, Choi B, Kim D G, et al. Remote navigation of turtle by controlling instinct behaviour via human brain–computer interface. J Bionic Eng, 2016, 13(3): 491-503.
|
9. |
Wang Wenbo, Guo Ce, Sun Jiurong, et al. Locomotion elicited by electrical stimulation in the midbrain of the lizard Gekko gecko// Budiyono A, Riyanto B, Joelianto E. Intelligent unmanned systems: Theory and applications. Berlin, Heidelberg: Springer, 2009, 192: 145-153.
|
10. |
Kobayashi N, Yoshida M, Matsumoto N, et al. Artificial control of swimming in goldfish by brain stimulation: confirmation of the midbrain nuclei as the swimming center. Neurosci Lett, 2009, 452(1): 42-46.
|
11. |
彭勇, 韩晓晓, 王婷婷, 等. 一种用于鲤鱼机器人的光刺激装置及光控实验方法. 生物医学工程学杂志, 2018, 35(5): 720-726.
|
12. |
Barker A T, Jalinous R, Freeston I L. Non-invasive stimulation of the human motor cortex. The Lancet, 1985, 1(8437): 1106-1107.
|
13. |
宋晓东, 王敏, 苏强. 重复性经颅磁刺激治疗神经系统疾病的研究进展. 山东第一医科大学(山东省医学科学院)学报, 2022, 43(8): 635-640.
|
14. |
熊慧, 邱博文, 刘近贞. 基于MRI数据的多通道经颅磁刺激帽型线圈单元仿真研究. 航天医学与医学工程, 2020, 33(3): 246-251.
|
15. |
Ferrulli A, Cannavaro D, Macrì C, et al. Repetitive transcranial magnetic stimulation: A potential therapeutic option for obesity in a patient with Prader-Willi syndrome. Diabetes Obes Metab, 2022, 24(12): 2478-2481.
|
16. |
Ueno S, Tashiro T, Harda K. Localized stimulation of neural tissues in the brain by means of a paired configuration of time – varying magnetic fields. J Appl Phys, 1988, 64(10): 5862-5864.
|
17. |
Ren C, Tarjan P P, Popovic D B. A novel electric design for electromagnetic stimulation – the slinky coil. IEEE T Bio-Med Eng, 1995, 42(9): 918-925.
|
18. |
Roth Y, Zangen A, Hallett M. A coil design for transcranial magnetic stimulation of deep brain region. J Clin Neurophysiol, 2002, 19(4): 361-370.
|
19. |
Salvador R, Miranda P C. Transcranial magnetic stimulation of small animals: a modeling study of the influence of coil geometry, size and orientation// 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC). Minneapolis: IEEE, 2009: 2-6.
|
20. |
Kim D H, Nagarajan S S, Durand D M. Analysis of efficient of magnetic stimulation. IEEE T Bio-Med Eng, 2003, 50(11): 1276-1285.
|
21. |
Zheng Jianbin, Li Linxia, Huo Xiaolin. Analysis of electric field in real rat head model during transcranial magnetic stimulation// 2005 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Shanghai: IEEE, 2005: 1529-1532.
|
22. |
Selvaraj J, Rastogi P, Gaunkar N P, et al. Transcranial magnetic stimulation: Design of a stimulator and a focused coil for the application of small animals. IEEE T Magn, 2018, 54(11): 5200405.
|
23. |
Carmona I C, Kumbhare D, Baron M S, et al. Quintuple AISI 1010 carbon steel core coil for highly focused transcranial magnetic stimulation in small animals. AIP Adv, 2021, 11(2): 025210.
|
24. |
Rush S, Driscoll D A. Current distribution in the brain from surface electrodes. Anesth Analg, 1968, 47: 717-723.
|
25. |
Lee W H, Lisanby S H, Laine A F, et al. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model. Eur Phychiatry, 2016, 36: 55-64.
|
26. |
Deng Z D, Lisanby S H, Peterchev A V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul, 2013, 6(1): 1-13.
|
27. |
Zucca M, Bottauscio O, Chiampi M, et al. Operator safety and field focality in aluminum shielded transcranial magnetic stimulation. IEEE T Magn, 2017, 53(11): 1-4.
|
28. |
熊慧, 景昭, 刘近贞. 新型经颅磁刺激三层-8字形线圈的结构设计. 浙江大学学报(工学版), 2021, 55(4): 793-800.
|
29. |
Rastogi P, Hadimani R L, Jiles D C. Investigation of coil design for transcranial magnetic stimulation on mice. IEEE T Magn, 2016, 52(7): 1-4.
|
30. |
郑志宇, 张广浩, 霍小林. 适用于小型动物实验的重复经颅磁刺激线圈冷却方法研究. 生物医学工程研究, 2018, 37(4): 377-381.
|