1. |
Rudebeck P H, Rich E L. Orbitofrontal cortex. Current Biology, 2018, 28(18): R1083-R1088..
|
2. |
Beghi E. The epidemiology of epilepsy. Neuroepidemiology, 2020, 54(2): 185-191..
|
3. |
Löscher W. Animal models of intractable epilepsy. Progress in Neurobiology, 1997, 53(2): 239-258..
|
4. |
Casson A J, Yates D C, Smith S J, et al. Wearable electroencephalography. What is it, why is it needed, and what does it entail?. IEEE Engineering in Medicine and Biology Magazine, 2010, 29(3): 44-56..
|
5. |
Das K, Daschakladar D, Roy P P, et al. Epileptic seizure prediction by the detection of seizure waveform from the pre-ictal phase of EEG signal. Biomedical Signal Processing and Control, 2020, 57: 101720..
|
6. |
Lopes M A, Perani S, Yaakub S N, et al. Revealing epilepsy type using a computational analysis of interictal EEG. Scientific Reports, 2019, 9(1): 10169..
|
7. |
Mormann F, Lehnertz K, David P, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 2000, 144(3-4): 358-369..
|
8. |
Voytek B, D'Esposito M, Crone N, et al. A method for event-related phase/amplitude coupling. Neuroimage, 2013, 64: 416-424..
|
9. |
Liang Z, Jin X, Ren Y, et al. Propofol anesthesia decreased the efficiency of long-range cortical interaction in humans. IEEE Transactions on Biomedical Engineering, 2021, 69(1): 165-175..
|
10. |
Ma H, Wang Z, Li C, et al. Phase–amplitude coupling and epileptogenic zone localization of frontal epilepsy based on intracranial EEG. Frontiers in Neurology, 2021, 12: 718683..
|
11. |
Jansen N A, Perez C, Schenke M, et al. Impaired θ-γ coupling indicates inhibitory dysfunction and seizure risk in a dravet syndrome mouse model. Journal of Neuroscience, 2021, 41(3): 524-537..
|
12. |
Salimpour Y, Mills K A, Hwang B Y, et al. Phase-targeted stimulation modulates phase-amplitude coupling in the motor cortex of the human brain. Brain Stimulation, 2022, 15(1): 152-163..
|
13. |
Rampp S, Rössler K, Hamer H, et al. Dysmorphic neurons as cellular source for phase-amplitude coupling in focal cortical dysplasia type II. Clinical Neurophysiology, 2021, 132(3): 782-792..
|
14. |
Mihály I, Orbán-Kis K, Gáll Z, et al. Amygdala low-frequency stimulation reduces pathological phase-amplitude coupling in the pilocarpine model of epilepsy. Brain Sciences, 2020, 10(11): 856..
|
15. |
Shoeb A H. Application of machine learning to epileptic seizure onset detection and treatment. Cambridge: Massachusetts Institute of Technology, 2009: 157-162..
|
16. |
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, 134(1): 9-21..
|
17. |
Chaumon M, Bishop D V, Busch N A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 2015, 250: 47-63..
|
18. |
Tort A B, Komorowski R, Eichenbaum H, et al. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 2010, 104(2): 1195-1210..
|
19. |
Kullback S, Leibler R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951, 22(1): 79-86..
|
20. |
Hülsemann M J, Naumann E, Rasch B. Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Frontiers in Neuroscience, 2019, 13: 573..
|
21. |
Canolty R T, Knight R T. The functional role of cross-frequency coupling. Trends in Cognitive Sciences, 2010, 14(11): 506-515..
|
22. |
van der Meij R, Kahana M, Maris E. Phase–amplitude coupling in human electrocorticography is spatially distributed and phase diverse. Journal of Neuroscience, 2012, 32(1): 111-123..
|
23. |
Schroeder C E, Lakatos P. Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 2009, 32(1): 9-18..
|
24. |
Amemiya S, Redish A D. Hippocampal theta-gamma coupling reflects state-dependent information processing in decision making. Cell Reports, 2018, 22(12): 3328-3338..
|
25. |
Köster M, Finger H, Graetz S, et al. Theta-gamma coupling binds visual perceptual features in an associative memory task. Scientific Reports, 2018, 8(1): 17688..
|
26. |
Liang W K, Tseng P, Yeh J R, et al. Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience, 2021, 460: 69-87..
|
27. |
Edakawa K, Yanagisawa T, Kishima H, et al. Detection of epileptic seizures using phase–amplitude coupling in intracranial electroencephalography. Scientific Reports, 2016, 6: 25422..
|
28. |
Guggisberg A G, Kirsch H E, Mantle M M, et al. Fast oscillations associated with interictal spikes localize the epileptogenic zone in patients with partial epilepsy. Neuroimage, 2008, 39(2): 661-668..
|
29. |
Lundstrom B N, Brinkmann B H, Worrell G A. Low frequency novel interictal EEG biomarker for localizing seizures and predicting outcomes. Brain Communications, 2021, 3(4): fcab231..
|