1. |
Bloss R. Latest in VISION SENSOR technology as well as innovations in sensing, pressure, force, medical, particle size and many other applications. Sensor Rev, 2017, 37(1): 7-11.
|
2. |
Posch C, Serrano-Gotarredona T, Linares-Barranco B, et al. Retinomorphic event-based vision sensors: bioinspired cameras with spiking output. Proc IEEE, 2014, 102(10): 1470-1484.
|
3. |
Duwek H C, Shalumov A, Tsur E E. Image reconstruction from neuromorphic event cameras using laplacian-prediction and poisson integration with spiking and artificial neural networks// 2021 Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville: IEEE, 2021: 1333-1341.
|
4. |
Gallego G, Delbrück T, Orchard G, et al. Event-based vision: A survey. IEEE Trans Pattern Anal Mach Intell, 2020, 44(1): 154-180.
|
5. |
Chen G, Hong L, Dong J, et al. EDDD: Event-based drowsiness driving detection through facial motion analysis with neuromorphic vision sensor. IEEE Sens J, 2020, 20(11): 6170-6181.
|
6. |
Lee C, Kosta A K, Zhu A Z, et al. Spike-FlowNet: event-based optical flow estimation with energy-efficient hybrid neural networks// Vedaldi A, Bischof H, Brox T. 2020 European Conference on Computer Vision (ECCV). Cham: Springer, 2020: 366-382.
|
7. |
Glover A, Vasco V, Bartolozzi C. A controlled-delay event camera framework for on-line robotics// 2018 IEEE International Conference on Robotics and Automation(ICRA). Brisbane: IEEE, 2018: 2178-2183.
|
8. |
Chen G, Cao H, Conradt J, et al. Event-based neuromorphic vision for autonomous driving: a paradigm shift for bio-inspired visual sensing and perception. IEEE Signal Process Mag, 2020, 37(4): 34-49.
|
9. |
Neil D, Liu S C. Effective sensor fusion with event-based sensors and deep network architectures// 2016 IEEE International Symposium on Circuits and Systems (ISCAS). Montreal: IEEE, 2016: 2282-2285.
|
10. |
Zhu A Z, Yuan L, Chaney K, et al. EV-FlowNet: Self-supervised optical flow estimation for event-based cameras. arXiv preprint arXiv, 2018: 1802.06898.
|
11. |
李杰. 基于深度卷积神经网络的动态手势识别. 济南: 山东大学, 2019.
|
12. |
Fang Y, Wang Z, Gomez J, et al. A swarm optimization solver based on ferroelectric spiking neural networks. Front Neurosci, 2019, 13: 855.
|
13. |
Shrestha S B, Orchard G. Slayer: Spike layer error reassignment in time. ArXiv preprint arXiv, 2018: 1810.08646.
|
14. |
She X, Mukhopadhyay S. SPEED: Spiking neural network with event-driven unsupervised learning and near-real-time inference for event-based vision. IEEE Sens J, 2021, 21(18): 20578-20588.
|
15. |
Zhao B, Ding R, Chen S, et al. Feedforward categorization on AER motion events using cortex-like features in a spiking neural network. IEEE Trans Neural Netw Learn Syst, 2014, 26(9): 1963-1978.
|
16. |
Xiao R, Tang H, Ma Y, et al. An event-driven categorization model for aer image sensors using multispike encoding and learning. IEEE Trans Neural Netw Learn Syst, 2019, 31(9): 3649-3657.
|
17. |
肖蓉. 脉冲神经网络编码和学习算法及应用研究. 成都: 四川大学, 2021.
|
18. |
Liu Q, Pan G, Ruan H, et al. Unsupervised AER object recognition based on multiscale spatio-temporal features and spiking neurons. IEEE Trans Neural Netw Learn Syst, 2020, 31(12): 5300-5311.
|
19. |
Orchard G, Meyer C, Etienne-Cummings R, et al. HFirst: A temporal approach to object recognition. IEEE Trans Pattern Anal Mach Intell, 2015, 37(10): 2028-2040.
|
20. |
Mozafari M, Kheradpisheh S R, Masquelier T, et al. First-spike-based visual categorization using reward-modulated STDP. IEEE Trans Neural Netw Learn Syst, 2018, 29(12): 6178-6190.
|
21. |
Meliza C D, Dan Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron, 2006, 49(2): 183-189.
|
22. |
Masquelier T, Guyonneau R, Thorpe S J. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS One, 2008, 3(1): e1377.
|
23. |
Florian R V. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput, 2007, 19(6): 1468-1502.
|
24. |
吕梦雨. 基于类脑的脉冲神经网络研究及其应用. 桂林: 桂林电子科技大学, 2021.
|
25. |
Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell, 2007, 29(3): 411-426.
|
26. |
郭磊, 吕欢, 黄凤荣, 等. 基于突触可塑性的无标度脉冲神经网络的动态特性研究. 生物医学工程学杂志, 2019, 36(6): 902-910.
|
27. |
Markram H, Gerstner W, Sjöström P J. Spike-timing-dependent plasticity: a comprehensive overview. Front Synaptic Neurosci, 2012, 4: 2.
|
28. |
张慧港, 徐桂芝, 郭嘉荣, 等. 类脑脉冲神经网络及其神经形态芯片研究综述. 生物医学工程学杂志, 2021, 38(5): 986-994, 1002.
|
29. |
Brzosko Z, Zannone S, Schultz W, et al. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation. Elife, 2017, 6: e27756.
|
30. |
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res, 2014, 15(1): 1929-1958.
|
31. |
Serrano-Gotarredona T, Linares-Barranco B. Poker-DVS and MNIST-DVS. Their history, how they were made, and other details. Front Neurosci, 2015, 9: 481.
|
32. |
Orchard G, Jayawant A, Cohen G K, et al. Converting static image datasets to spiking neuromorphic datasets using saccades. Front Neurosci, 2015, 9: 437.
|
33. |
Sironi A, Brambilla M, Bourdis N, et al. HATS: Histograms of averaged time surfaces for robust event-based object classification// 2018 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake City: IEEE, 2018: 1731-1740.
|
34. |
Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86(11): 2278-2324.
|