1. |
Meng J, Xu M, Wang K, et al. Separable EEG features induced by timing prediction for active brain-computer interfaces. Sensors, 2020, 20(12): 3588.
|
2. |
Xu M, He F, Jung T P, et al. Current challenges for the practical application of electroencephalography based brain-computer interfaces. Engineering, 2021, 7(12): 1710-1712.
|
3. |
Wang Y, Wang R, Gao X, et al. A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2006, 14(2): 234-239.
|
4. |
邵星翰. 基于 SSVEP 的脑-机接口信号处理方法研究. 山东大学, 2020.
|
5. |
Jiang J, Yin E, Wang C, et al. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. J Neural Eng, 2018, 15(4): 046025.
|
6. |
Pinheiro C G, Naves E L, Pino P, et al. Alternative communication systems for people with severe motor disabilities: a survey. Biomed Eng Online, 2011, 10: 31.
|
7. |
Diez P F, Mut V A, Laciar E, et al. Mobile robot navigation with a self-paced brain-computer interface based on high-frequency SSVEP. Robotica, 2013, 32(5): 695-709.
|
8. |
Won D O, Zhang H H, Guan C, et al. A BCI speller based on SSVEP using high frequency stimuli design//2014 IEEE international conference on systems, man, and cybernetics (SMC), San Diego: IEEE, 2014: 1068-1071.
|
9. |
Diez P F, Torres Müller S M, Mut V A, et al. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface. Med Eng Phys, 2013, 35(8): 1155-1164.
|
10. |
Chen X, Zhao B, Wang Y, et al. Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm. J Neural Eng, 2019, 16(2): 026012.
|
11. |
Ye X, Yang C, Chen Y, et al. Multi-symbol time division coding for high-frequency steady-state visual evoked potential-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng, 2022, 30: 1693-1704.
|
12. |
Cheng M, Gao X, Gao S, et al. Design and implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng, 2002, 49(10): 1181-1186.
|
13. |
Bin G, Gao X, Yan Z, et al. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng, 2009, 6(4): 046002.
|
14. |
Chen X, Wang Y, Nakanishi M, et al. High-speed spelling with a noninvasive brain-computer interface. Proc Natl Acad Sci USA, 2015, 112(44): E6058-E6067.
|
15. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2018, 65(1): 104-112.
|
16. |
Wong C M, Wan F, Wang B, et al. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. J Neural Eng, 2020, 17(1): 016026.
|
17. |
Wong C M, Wang B, Wang Z, et al. Spatial filtering in SSVEP-based BCIs: Unified framework and new improvements. IEEE Trans Biomed Eng, 2020, 67(11): 3057-3072.
|
18. |
Sun Q, Chen M, Zhang L, et al. Similarity-constrained task-related component analysis for enhancing SSVEP detection. J Neural Eng, 2021, 18(4): 046080.
|
19. |
Liu B, Chen X, Shi N, et al. Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1998-2007.
|
20. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008.
|
21. |
Pan J, Gao X, Duan F, et al. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis. J Neural Eng, 2011, 8(3): 036027.
|
22. |
Liang L, Yang C, Wang Y, et al. High-frequency SSVEP stimulation paradigm based on dual frequency modulation//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin: IEEE, 2019: 6184-6187.
|
23. |
Liu W, Zhang L, Li C. A method for recognizing high-frequency steady-state visual evoked potential based on empirical modal decomposition and canonical correlation analysis//2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu: IEEE, 2019: 774-778.
|
24. |
Ming G, Pei W, Chen H, et al. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. J Neural Eng, 2021, 18(5): 056046.
|
25. |
许敏鹏, 吴乔逸, 熊文田, 等. 面向中高频 SSVEP 脑机接口的编解码算法研究. 信号处理, 2022, 38(9): 1881-1891.
|
26. |
Jiang L, Pei W, Wang Y. A user-friendly SSVEP-based BCI using imperceptible phase-coded flickers at 60 Hz. China Commun, 2022, 19(2): 1-14.
|
27. |
Vahid F, Behboodi M, Mahnam A. Bichromatic visual stimulus with subharmonic response to achieve a high-accuracy SSVEP BCI system with low eye irritation. Biomed Signal Proces, 2023, 83: 104629.
|
28. |
Ming G, Pei W, Gao X, et al. A high-performance SSVEP-based BCI using imperceptible flickers. J Neural Eng, 2023, 20(1): 016042.
|
29. |
Chen X, Liu B, Wang Y, et al. Optimizing stimulus frequency ranges for building a high-rate high frequency SSVEP-BCI. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 1277-1286.
|
30. |
Yue L, Xiao X, Xu M, et al. A brain-computer interface based on high-frequency steady-state asymmetric visual evoked potentials//2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal: IEEE, 2020: 3090-3093.
|
31. |
Xu M, Xiao X, Wang Y, et al. A brain-computer interface based on miniature-event-related potentials induced by very small lateral visual stimuli. IEEE Trans Biomed Eng, 2018, 65(5): 1166-1175.
|