1. |
Dethe M R, Prabakaran A, Ahmed H, et al. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Contr Rel, 2022, 343: 217-236.
|
2. |
Dang P A, Palomino-Durand C, Elsafi Mabrouk M, et al. Rational formulation design of injectable thermosensitive chitosan-based hydrogels for cell encapsulation and delivery. Carbohydr Polym, 2022, 277: 118836.
|
3. |
Shi J, Yu L, Ding J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater, 2021, 128: 42-59.
|
4. |
Nie L, Wei Q, Sun M, et al. Injectable, self-healing, transparent, and antibacterial hydrogels based on chitosan and dextran for wound dressings. Int J Biol Macromol, 2023, 233: 123494.
|
5. |
Corazza E, di Cagno M P, Bauer-Brandl A, et al. Drug delivery to the brain: In situ gelling formulation enhances carbamazepine diffusion through nasal mucosa models with mucin. Eur J Pharm Sci, 2022, 179: 106294.
|
6. |
Yap L-S, Yang M-C. Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation. Colloids Surf B, 2020, 185: 110606.
|
7. |
Lee E J, Kang E, Kang S-W, et al. Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering. Carbohydr Polym, 2020, 244: 116432.
|
8. |
Khiabani S S, Aghazadeh M, Rakhtshah J, et al. A review of hydrogel systems based on poly(N-isopropyl acrylamide) for use in the engineering of bone tissues. Colloids Surf B, 2021, 208: 112035.
|
9. |
Patel V, Parekh P, Khimani M, et al. Pluronics® based Penta block copolymer micelles as a precursor of smart aggregates for various applications: A review. J Mol Liq, 2023, 372: 121140.
|
10. |
Yeo Y H, Park W H. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels. Carbohydr Polym, 2021, 258: 117705.
|
11. |
Jiang L, Yao F, Zhang E, et al. Combined treatment of xyloglucan derivative hydrogel and anti-C5a receptor antibody in preventing peritoneal adhesion. Acta Biomater, 2022, 151: 163-173.
|
12. |
dos Santos Carvalho J D, Rabelo R S, Hubinger M D. Thermo-rheological properties of chitosan hydrogels with hydroxypropyl methylcellulose and methylcellulose. Int J Biol Macromol, 2022, 209(Pt A): 367-375.
|
13. |
Coughlin M L, Liberman L, Ertem S P, et al. Methyl cellulose solutions and gels: fibril formation and gelation properties. Prog Polym Sci, 2021, 112: 101324.
|
14. |
Niemczyk-Soczynska B, Sajkiewicz P, Gradys A. Toward a better understanding of the gelation mechanism of methylcellulose via systematic DSC Studies. Polymers, 2022, 14: 1810.
|
15. |
Xiao Q, Huang M, Zhou X, et al. Effect of molecular weight and degree of substitution on the physical-chemical properties of methylcellulose-starch nanocrystal nanocomposite films. Polymers, 2021, 13: 3291.
|
16. |
Liberman L, Schmidt P W, Coughlin M L, et al. Salt-dependent structure in methylcellulose fibrillar gels. Macromolecules, 2021, 54(5): 2090-2100.
|
17. |
Li X, Guo C, Yang X, et al. Acid-induced mixed methylcellulose and casein gels: structures, physical properties and formation mechanism. Food Chem, 2022, 366(1): 130561.
|
18. |
Jiang B N, Li D, Zou X N, et al. Preparation and antibacterial activity of injectable methylcellulose/chitosan double network hydrogel. Cellulose, 2023, 30: 1-16.
|
19. |
Bonetti L, De Nardo L, Farè S. Thermo-responsive methylcellulose hydrogels: from design to applications as smart biomaterials. Tissue Eng Part B Rev, 2021, 27(5): 486-513.
|
20. |
Bonetti L, De Nardo L, Farè S. Crosslinking strategies in modulating methylcellulose hydrogel properties. Soft Matter, 2023, 19(41): 7869-7884.
|
21. |
Kumar P, Choonara Y E. Thermogelling behaviour of PEG-enclatherated Methylcellulose/Alginate sols. Mater Res Express, 2021, 8(10): 105303.
|
22. |
Fahad M, Khan M A, Gilbert M. Investigation of thermal gel formation of methylcellulose in glycols using DSC and XRD. Gels, 2021, 7(4): 205.
|
23. |
Kolawole O M, Cook M T. In situ gelling drug delivery systems for topical drug delivery. Eur J Pharm Biopharm, 2023, 184: 36-49.
|
24. |
Sanjana A, Mohammed Gulzar Ahmed, Jaswanth Gowda B H. Preparation and evaluation of in-situ gels containing hydrocortisone for the treatment of aphthous ulcer. J Oral Biol Craniofac Res, 2021, 11(2): 269-276.
|
25. |
Nagai N, Minami M, Deguchi S, et al. An in situ gelling system based on methylcellulose and tranilast solid nanoparticles enhances ocular residence time and drug absorption into the cornea and conjunctiva. Front Bioeng Biotech, 2020, 8: 764.
|
26. |
Jakfar S, Lin T C, Chen Z Y, et al. A polysaccharide isolated from the herb Bletilla striata combined with methylcellulose to form a hydrogel via self-assembly as a wound dressing. Int J Mol Sci, 2022, 23(19): 12019.
|
27. |
Westin C B, Nagahara M H T, Decarli M C, et al. Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J, 2020, 129: 109637.
|
28. |
Dhanka M, Pawar V, Chauhan D S, et al. Synthesis and characterization of an injectable microparticles integrated hydrogel composite biomaterial: In-vivo biocompatibility and inflammatory arthritis treatment. Colloids Surf B, 2021, 201: 111597.
|
29. |
Chiang C W, Hsiao Y C, Jheng P R, et al. Strontium ranelate-laden near-infrared photothermal-inspired methylcellulose hydrogel for arthritis treatment. Mater Sci Eng C, 2021, 123: 111980.
|
30. |
Beetler D J, Di Florio D N, Law E W, et al. The evolving regulatory landscape in regenerative medicine. Mol Aspects Med, 2023, 91: 101138.
|
31. |
Hu Q Q, Xie N, Liao K D, et al. An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair. Int J Biol Macromol, 2022, 219: 96-108.
|
32. |
Huang Z W, Xiao X, Jiang X, et al. Preparation and evaluation of a temperature-responsive methylcellulose/polyvinyl alcohol hydrogel for stem cell encapsulation. Polym Test, 2023, 119: 107936.
|
33. |
Durairaj K, Balasubramanian B, Arumugam V A, et al. Biocompatibility of veratric acid-encapsulated chitosan/methylcellulose hydrogel: biological characterization, osteogenic efficiency with in silico molecular modeling. Appl Biochem Biotechnol, 2023, 195(7): 4429-4446.
|
34. |
Grimaudo M A, Krishnakumar G S, Giusto E, et al. Bioactive injectable hydrogels for on demand molecule/cell delivery and for tissue regeneration in the central nervous system. Acta Biomater, 2022, 140: 88-101.
|
35. |
Delplace V, Pickering A J, Hettiaratchi M H, et al. Inverse electron-demand Diels–Alder methylcellulose hydrogels enable the co-delivery of chondroitinase ABC and neural progenitor cells. Biomacromolecules, 2020, 21(6): 2421-2431.
|
36. |
Deguchi S, Ogata F, Yamaguchi M, et al. In situ gel incorporating disulfiram nanoparticles rescues the retinal dysfunction via ATP collapse in Otsuka Long–Evans Tokushima fatty rats. Cells, 2020, 9(10): 2171.
|
37. |
Erezuma I, Lukin I, Desimone M, et al. Progress in self-healing hydrogels and their applications in bone tissue engineering. Biomater Adv, 2023, 146: 213274.
|
38. |
Varshosaz J, Sajadi-Javan Z, Kouhi M, et al. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels. Int J Biol Macromol, 2021, 192: 869-882.
|
39. |
Huang K, Du J, Xu J, et al. Tendon-bone junction healing by injectable bioactive thermo-sensitive hydrogel based on inspiration of tendon-derived stem cells. Mater Today Chem, 2022, 23: 100720.
|
40. |
Deng L, Liu Y, Yang L, et al. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration. Colloids Surf B, 2020, 194: 111159.
|
41. |
Sajadi-Javan Z S, Varshosaz J, Mirian M, et al. Thermo-responsive hydrogels based on methylcellulose/Persian gum loaded with taxifolin enhance bone regeneration: an in vitro/ in vivo study. Cellulose, 2022, 29: 2413-2433.
|
42. |
Sultana T, Van Hai H, Abueva C, et al. TEMPO oxidized nano-cellulose containing thermo-responsive injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. Mater Sci Eng C, 2019, 102: 12-21.
|
43. |
Sultana T, Van Hai H, Park M, et al. Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr Polym, 2020, 229: 115552.
|
44. |
Yeo Y H, Chathuranga K, Lee J S, et al. Multifunctional and thermoresponsive methylcellulose composite hydrogels with photothermal effect. Carbohydr Polym, 2022, 277: 118834.
|