1. |
Saranya N, Kanthimathi N, Boomika S, et al. Classification and prediction of lung cancer with histopathological images using VGG-19 architecture. IFIP Advances in Information and Communication Technology (IFIPAICT), 2022, 654: 152-161.
|
2. |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
3. |
Xu Z, Ren H, Zhou W, et al. ISANET: non-small cell lung cancer classification and detection based on CNN and attention mechanism. Biomedical Signal Processing and Control, 2022, 77: 103773.
|
4. |
Rizvi N A, Hellmann M D, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science, 2015, 348(6230): 124-128.
|
5. |
Greillier L, Tomasini P, Barlesi F. The clinical utility of tumor mutational burden in non-small cell lung cancer. Transl Lung Cancer Res, 2018, 7(6): 639-646.
|
6. |
Coudray N, Ocampo P S, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med, 2018, 24(10): 1559-1567.
|
7. |
Christopher T, Banu J J. Study of classification algorithm for lung cancer prediction. International Journal of Innovative Science, Engineering & Technology, 2016, 3(2): 42-49.
|
8. |
Deniz E, Şengür A, Kadiroğlu Z, et al. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf Sci Syst, 2018, 6(1): 18.
|
9. |
孙德伟, 王志刚, 杨啸林, 等. 基于深度学习的肺腺癌肿瘤突变负荷的预测. 中国生物医学工程学报, 2021, 40(6): 681-690.
|
10. |
刘邓, 杨啸林, 孟祥福. RcaNet: 一种预测肿瘤突变负荷的深度学习模型. 中国生物医学工程学报, 2023, 42(1): 51-61.
|
11. |
Stenzinger A, Allen J D, Maas J, et al. Tumor mutational burden standardization initiatives: recommendations for consistent tumor mutational burden assessment in clinical samples to guide immunotherapy treatment decisions. Genes, Chromosomes and Cancer, 2019, 58(8): 578-588.
|
12. |
Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2021: 13713-13722.
|
13. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 770-778.
|
14. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift// International Conference on Machine Learning, 2015. Corpus ID: 5808102.
|
15. |
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Journal of Machine Learning Research, 2011, 15: 315-323.
|
16. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition// Proceedings of the International Conference on Learning Representations, 2015. arXiv: 1409.1556v6.
|
17. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision// IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2016: 2818-2826.
|
18. |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2018: 7132-7141.
|
19. |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module//Proceedings of the European Conference on Computer Vision, Springer, 2018: 3-19.
|
20. |
Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint, 2017: 1704.04861.
|
21. |
Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25(2): 1097-1105.
|
22. |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning//Proceedings of the AAAI Conference on artificial Intelligence, AAAI, 2016: 4278-4284.
|
23. |
Tan M, Le Q. Efficientnet: rethinking model scaling for convolutional neural networks//The 36th International Conference on Machine Learning. ArXiv, 2019. abs/1905.11946.
|
24. |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 2261-2269.
|
25. |
Zhang Hang, Wu Chongruo, Zhang Zhongyue, et al. ResNeSt: split-attention networks//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans: IEEE, 2022: 2735-2745.
|