1. |
Barry CE 3rd, Boshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol, 2009, 7(12): 845-855.
|
2. |
World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. http://apps.who.int/iris/bitstream/handle/10665/260233/9789241550239-eng.pdf;jsessionid=B3FF14274655CFB810D114E8AC3B21C3?sequence=1.
|
3. |
Comstock GW, Livesay VT, Woolpert SF. The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol, 1974, 99(2): 131-138.
|
4. |
Vynnycky E, Fine PE. Lifetime risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol, 2000, 152(3): 247-263.
|
5. |
Koul A, Arnoult E, Lounis N, et al. The challenge of new drug discovery for tuberculosis. Nature, 2011, 469(7331): 483-490.
|
6. |
Sveinbjornsson G, Gudbjartsson DF, Halldorsson BV, et al. HLA class Ⅱ sequence variants influence tuberculosis risk in populations of European ancestry. Nat Genet, 2016, 48(3): 318-322.
|
7. |
Oki NO, Motsinger-Reif AA, Antas PR, et al. Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study. BMC Res Notes, 2011, 4: 28.
|
8. |
Wu SQ, Huang WW, Wang D, et al. Evaluation of TLR2, TLR4, and TOLLIP polymorphisms for their role in tuberculosis susceptibility. APMIS, 2018, 126(6): 501-508.
|
9. |
Lu YJ, Zhu YW, Wang X, et al. FOXO3 rs12212067: T > G association with active tuberculosis in Han Chinese population. Inflammation, 2016, 39(1): 10-15.
|
10. |
Lu YJ, Li Q, Peng J, et al. Association of autophagy-related IRGM polymorphisms with latent versus active tuberculosis infection in a Chinese population. Tuberculosis (Edinb), 2016, 97: 47-51.
|
11. |
He Q, Tang K, Luo M, et al. Association between cytokine gene polymorphisms and tuberculosis in a Chinese population in Shanghai: a case-control study. J Clin Microbiol, 2015, 16: 8.
|
12. |
Yang Y, Li XW, Cui W, et al. Potential association of pulmonary tuberculosis with genetic polymorphisms of toll-like receptor 9 and interferon-gamma in a Chinese population. BMC Infect Dis, 2013, 13: 511.
|
13. |
Mekonnen E, Bekele E. An ancestral human genetic variant linked to an ancient disease: a novel association of FMO2 polymorphisms with tuberculosis (TB) in Ethiopian populations provides new insight into the differential ethno-geographic distribution of FMO2*1. PLoS One, 2017, 12(10): e0184931.
|
14. |
Hall NB, Igo J, Malone LL, et al. Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun, 2015, 16(2): 127-133.
|
15. |
Braun K, Wolfe J, Kiazyk S, et al. Evaluation of host genetics on outcome of tuberculosis infection due to differences in killer immunoglobulin-like receptor gene frequencies and haplotypes. BMC Genet, 2015, 16: 63.
|
16. |
Stagas MK, Papaetis GS, Orphanidou DA, et al. Polymorphisms of the NRAMP1 gene: distribution and susceptibility to the development of pulmonary tuberculosis in the Greek population. Med Sci Monit, 2011, 17(1): PH1-PH6.
|
17. |
Duarte R, Carvalho C, Pereira C, et al. HLA class Ⅱ alleles as markers of tuberculosis susceptibility and resistance. Rev Port Pneumol, 2011, 17(1): 15-19.
|
18. |
Dalgic N, Tekin D, Kayaalti Z, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol, 2011, 72(5): 440-445.
|
19. |
Ganachari M, Ruiz-Morales JA, Gomez de la Torre Pretell JC, et al. Joint effect of MCP-1 genotype GG and MMP-1 genotype 2G/2G increases the likelihood of developing pulmonary tuberculosis in BCG-vaccinated individuals. PLoS One, 2010, 5(1): e8881.
|
20. |
Jacobsen M, Repsilber D, Gutschmidt A, et al. Candidate biomarkers for discrimination between infection and disease caused by Mycobacterium tuberculosis. J Mol Med (Berl), 2007, 85(6): 613-621.
|
21. |
Berry MP, Graham CM, Mcnab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(739): 973-977.
|
22. |
Lu CY, Wu J, Wang HH, et al. Novel biomarkers distinguishing active tuberculosis from latent infection identified by gene expression profile of peripheral blood mononuclear cells. PLoS One, 2011, 6(8): e24290.
|
23. |
Maertzdorf J, Repsilber D, Parida SK, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun, 2011, 12(1): 15-22.
|
24. |
Kaforou M, Wright VJ, Oni T, et al. Detection of tuberculosis in HIV-infected and -uninfected African adults using whole blood RNA expression signatures: a case-control study. PLoS Med, 2013, 10(10): e1001538.
|
25. |
Maertzdorf J, Mcewen G, Weiner IJ, et al. Concise gene signature for point-of-care classification of tuberculosis. EMBO Mol Med, 2016, 8(2): 86-95.
|
26. |
Sweeney TE, Braviak L, Tato CM. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224.
|
27. |
Zak DE, Penn-Nicholson A, Scriba TJ, et al. A blood RNA signature for tuberculosis disease risk: a prospective cohort study. Lancet, 2016, 387(135): 2312-2322.
|
28. |
Suliman S, Thompson EG, Sutherland J, et al. Four-gene pan-African blood signature predicts progression to tuberculosis. Am J Respir Crit Care Med, 2018, 197(9): 1198-1208.
|
29. |
De Groote MA, Higgins M, Hraha T, et al. Highly multiplexed proteomic analysis of quantiferon supernatants to identify biomarkers of latent tuberculosis infection. J Clin Microbiol, 2017, 55(2): 391-402.
|
30. |
Li JQ, Sun L, Xu F, et al. Characterization of plasma proteins in children of different Mycobacterium tuberculosis infection status using label-free quantitative proteomics. Oncotarget, 2017, 8(61): 103290-103301.
|
31. |
Sun HS, Pan LP, Jia HY, et al. Label-free quantitative proteomics identifies novel plasma biomarkers for distinguishing pulmonary tuberculosis and latent infection. Front Microbiol, 2018, 9: 1267.
|
32. |
Ji HY, Liu Y, He F, et al. LC-MS based urinary metabolomics study of the intervention effect of aloe-emodin on hyperlipidemia rats. J Pharm Biomed Anal, 2018, 156: 104-115.
|
33. |
Weiner J 3rd, Parida SK, Maertzdorf J, et al. Biomarkers of inflammation, immunosuppression and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PLoS One, 2012, 7(7): e40221.
|
34. |
Petruccioli E, Scriba TJ, Petrone LA, et al. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J, 2016, 48(6): 1751-1763.
|