1. |
Haanpää M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment. Pain, 2011, 152(1): 14-27.
|
2. |
Baron R, Binder A, Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol, 2010, 9(8): 807-819.
|
3. |
Deumens R, Jaken RJ, Knaepen L, et al. Inverse relation between intensity of GFAP expression in the substantia gelatinosa and degree of chronic mechanical allodynia. Neurosci Lett, 2009, 452(2): 101-105.
|
4. |
Del Puerto A, Wandosell F, Garrido JJ. Neuronal and glial purinergic receptors functions in neuron development and brain disease. Front Cell Neurosci, 2013, 7: 197.
|
5. |
Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain. Nat Rev Neurosci, 2016, 18(1): 20-30.
|
6. |
Sommer C, Leinders M, Üçeyler N. Inflammation in the pathophysiology of neuropathic pain. Pain, 2018, 159(3): 595-602.
|
7. |
Block L. Glial dysfunction and persistent neuropathic postsurgical pain. Scand J Pain, 2016, 10: 74-81.
|
8. |
Chiang CY, Sessle BJ, Dostrovsky JO. Role of astrocytes in pain. Neurochem Res, 2012, 37(11): 2419-2431.
|
9. |
Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy?. Pain, 2013, 154 (Suppl 1): S10-S28.
|
10. |
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull, 2019, 151: 12-24.
|
11. |
Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev, 2007, 87(2): 659-797.
|
12. |
Burnstock G. P2X ion channel receptors and inflammation. Purinergic Signal, 2016, 12(1): 59-67.
|
13. |
Kobayashi K, Yamanaka H, Noguchi K. Expression of ATP receptors in the rat dorsal root ganglion and spinal cord. Anat Sci Int, 2013, 88(1): 10-16.
|
14. |
Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology, 2016, 104: 31-49.
|
15. |
Dalgarno R, Leduc-Pessah H, Pilapil A, et al. Intrathecal delivery of a palmitoylated peptide targeting Y382-384 within the P2X7 receptor alleviates neuropathic pain. Mol Pain, 2018, 14: 1744806918795793.
|
16. |
He Y, Taylor N, Fourgeaud L, et al. The role of microglial P2X7: modulation of cell death and cytokine release. J Neuroinflammation, 2017, 14(1): 135.
|
17. |
Inoue K. Role of the P2X4 receptor in neuropathic pain. Curr Opin Pharmacol, 2019, 47: 33-39.
|
18. |
Barragán-Iglesias P, Pineda-Farias JB, Bravo-Hernández M, et al. Predominant role of spinal P2Y1 receptors in the development of neuropathic pain in rats. Brain Res, 2016, 1636: 43-51.
|
19. |
Shigetomi E, Hirayama YJ, Ikenaka K, et al. Role of purinergic receptor P2Y1 in spatiotemporal Ca2+ dynamics in astrocytes. J Neurosci, 2018, 38(6): 1383-1395.
|
20. |
Magni G, Ceruti S. The role of adenosine and P2Y receptors expressed by multiple cell types in pain transmission. Brain Res Bull, 2019, 151: 132-143.
|
21. |
Li N, Lu ZY, Yu LH, et al. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain, 2014, 10: 21.
|
22. |
Shi Y, Qin W, Nie F, et al. Ulinastatin attenuates neuropathic pain via the ATP/P2Y2 receptor pathway in rat models. Gene, 2017, 627: 263-270.
|
23. |
Vit JP, Jasmin L, Bhargava A, et al. Satellite glial cells in the trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia Biol, 2006, 2(4): 247-257.
|
24. |
Weick M, Cherkas PS, Härtig W, et al. P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience, 2003, 120(4): 969-977.
|
25. |
Strøbaek D, Teuber L, Jørgensen TD, et al. Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6, 7-dichloro-1H-indole-2, 3-dione 3-oxime). Biochim Biophys Acta, 2004, 1665(1/2): 1-5.
|
26. |
Huang D, Yang J, Liu X, et al. P2Y6 receptor activation is involved in the development of neuropathic pain induced by chronic constriction injury of the sciatic nerve in rats. J Clin Neurosci, 2018, 56: 156-162.
|
27. |
Wang Z, Zhao W, Shen X, et al. The role of P2Y6 receptors in the maintenance of neuropathic pain and its improvement of oxidative stress in rats. J Cell Biochem, 2019, 120(10): 17123-17130.
|
28. |
Barragán-Iglesias P, Pineda-Farias JB, Cervantes-Durán C, et al. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain, 2014, 10: 29.
|
29. |
Gu N, Eyo UB, Murugan M, et al. Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain. Brain Behav Immun, 2016, 55: 82-92.
|
30. |
Horváth G, Gölöncsér F, Csölle C, et al. Central P2Y12 receptor blockade alleviates inflammatory and neuropathic pain and cytokine production in rodents. Neurobiol Dis, 2014, 70: 162-178.
|
31. |
Sugawara S, Okada S, Katagiri A, et al. Interaction between calcitonin gene-related peptide-immunoreactive neurons and satellite cells via P2Y12 R in the trigeminal ganglion is involved in neuropathic tongue pain in rats. Eur J Oral Sci, 2017, 125(6): 444-452.
|
32. |
Zhou R, Xu T, Liu X, et al. Activation of spinal dorsal horn P2Y13 receptors can promote the expression of IL-1β and IL-6 in rats with diabetic neuropathic pain. J Pain Res, 2018, 11: 615-628.
|
33. |
Tatsumi E, Yamanaka H, Kobayashi K, et al. RhoA/ROCK pathway mediates p38 MAPK activation and morphological changes downstream of P2Y12/13 receptors in spinal microglia in neuropathic pain. Glia, 2015, 63(2): 216-228.
|
34. |
Kobayashi K, Yamanaka H, Yanamoto F, et al. Multiple P2Y subtypes in spinal microglia are involved in neuropathic pain after peripheral nerve injury. Glia, 2012, 60(10): 1529-1539.
|
35. |
Lin J, Liu F, Zhang YY, et al. P2Y14 receptor is functionally expressed in satellite glial cells and mediates interleukin-1β and chemokine CCL2 secretion. J Cell Physiol, 2019, 234(11): 21199-21210.
|
36. |
Colloca L, Ludman T, Bouhassira D, et al. Neuropathic pain. Nat Rev Dis Primers, 2017, 3: 17002.
|
37. |
Wright ME, Rizzolo D. An update on the pharmacologic management and treatment of neuropathic pain. JAAPA, 2017, 30(3): 13-17.
|