1. |
Smith HW, Gyles CL. The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J Med Microbiol, 1970, 3(3): 387-401.
|
2. |
Kuhn M. Molecular physiology of membrane guanylyl cyclase receptors. Physiol Rev, 2016, 96(2): 751-804.
|
3. |
Waldman SA, Camilleri M. Guanylate cyclase-C as a therapeutic target in gastrointestinal disorders. Gut, 2018, 67(8): 1543-1552.
|
4. |
Uranga JA, Castro M, Abalo R. Guanylate cyclase C: a current hot target, from physiology to pathology. Curr Med Chem, 2018, 25(16): 1879-1908.
|
5. |
Pattison AM, Blomain ES, Merlino DJ, et al. Intestinal enteroids model guanylate cyclase C-dependent secretion induced by heat-stable enterotoxins. Infect Immun, 2016, 84(10): 3083-3091.
|
6. |
Bijvelds MJ, Loos M, Bronsveld I, et al. Inhibition of heat-stable toxin-induced intestinal salt and water secretion by a novel class of guanylyl cyclase C inhibitors. J Infect Dis, 2015, 212(11): 1806-1815.
|
7. |
Venglovecz V, Pallagi P, Kemény LV, et al. The importance of aquaporin 1 in pancreatitis and its relation to the CFTR Cl - channel. Front Physiol, 2018, 9: 854.
|
8. |
Hegyi P, Wilschanski M, Muallem S, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Rev Physiol Bioch P, 2016, 170(4): 37-66.
|
9. |
Lee PJ, Papachristou GI. New insights into acute pancreatitis. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 479-496.
|
10. |
Kulaksiz H, Cetin Y. The electrolyte/fluid secretion stimulatory peptides guanylin and uroguanylin and their common functional coupling proteins in the rat pancreas: a correlative study of expression and cell-specific localization. Pancreas, 2002, 25(2): 170-175.
|
11. |
Schulz S, Chrisman TD, Garbers DL. Cloning and expression of guanylin. Its existence in various mammalian tissues. J Biol Chem, 1992, 267(23): 16019-16021.
|
12. |
Zhang ZH, Jow F, Numann R, et al. The airway-epithelium: a novel site of action by guanylin. Biochem Biophys Res Commun, 1998, 244(1): 50-56.
|
13. |
Lan D, Niu J, Miao J, et al. Expression of guanylate cyclase-C, guanylin, and uroguanylin is downregulated proportionally to the ulcerative colitis disease activity index. Sci Rep, 2016, 6: 25034.
|
14. |
Han X, Mann E, Gilbert S, et al. Loss of guanylyl cyclase C (GCC) signaling leads to dysfunctional intestinal barrier. PLoS One, 2011, 6(1): e16139.
|
15. |
Lin JE, Snook AE, Li P, et al. GUCY2C opposes systemic genotoxic tumorigenesis by regulating AKT-dependent intestinal barrier integrity. PLoS One, 2012, 7(2): e31686.
|
16. |
Lin JE, Li P, Snook AE, et al. The hormone receptor GUCY2C suppresses intestinal tumor formation by inhibiting AKT signaling. Gastroenterology, 2010, 138(1): 241-254.
|
17. |
Lembo AJ, Schneier HA, Shiff SJ, et al. Two randomized trials of linaclotide for chronic constipation. N Engl J Med, 2011, 365(6): 527-536.
|
18. |
Tchernychev B, Ge P, Kessler MM, et al. MRP4 modulation of the guanylate cyclase-C/cGMP pathway: effects on linaclotide-induced electrolyte secretion and cGMP efflux. J Pharmacol Exp Ther, 2015, 355(1): 48-56.
|
19. |
Shailubhai K, Palejwala V, Arjunan KP, et al. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis. World J Gastrointest Pharmacol Ther, 2015, 6(4): 213-222.
|
20. |
Diop L, Raymond F, Fargeau H, et al. Pregabalin (CI-1008) inhibits the trinitrobenzene sulfonic acid-induced chronic colonic allodynia in the rat. J Pharmacol Exp Ther, 2002, 302(3): 1013-1022.
|
21. |
Boulete IM, Thadi A, Beaufrand C, et al. Oral treatment with plecanatide or dolcanatide attenuates visceral hypersensitivity via activation of guanylate cyclase-C in rat models. World J Gastroenterol, 2018, 24(17): 1888-1900.
|
22. |
Silos-Santiago I, Hannig G, Eutamene H, et al. Gastrointestinal pain: unraveling a novel endogenous pathway through uroguanylin/guanylate cyclase-C/cGMP activation. Pain, 2013, 154(9): 1820-1830.
|
23. |
Chang WL, Masih S, Thadi A, et al. Plecanatide-mediated activation of guanylate cyclase-C suppresses inflammation-induced colorectal carcinogenesis in Apc+/Min-FCCC mice. World J Gastrointest Pharmacol Ther, 2017, 8(1): 47-59.
|
24. |
Harmel-Laws E, Mann EA, Cohen MB, et al. Guanylate cyclase C deficiency causes severe inflammation in a murine model of spontaneous colitis. PLoS One, 2013, 8(11): e79180.
|
25. |
Brenna Ø, Bruland T, Furnes MW, et al. The guanylate cyclase-C signaling pathway is down-regulated in inflammatory bowel disease. Scand J Gastroenterol, 2015, 50(10): 1241-1252.
|
26. |
Freihat LA, Wheeler JI, Wong A, et al. IRAK3 modulates downstream innate immune signalling through its guanylate cyclase activity. Sci Rep, 2019, 9(1): 15468.
|
27. |
Amarachintha S, Harmel-Laws E, Steinbrecher KA. Guanylate cyclase C reduces invasion of intestinal epithelial cells by bacterial pathogens. Sci Rep, 2018, 8(1): 1521.
|
28. |
Tronstad RR, Kummen M, Holm K, et al. Guanylate cyclase C activation shapes the intestinal microbiota in patients with familial diarrhea and increased susceptibility for Crohn’s disease. Inflamm Bowel Dis, 2017, 23(10): 1752-1761.
|
29. |
Kraft CL, Rappaport JA, Snook AE, et al. GUCY2C maintains intestinal LGR5+ stem cells by opposing ER stress. Oncotarget, 2017, 8(61): 102923-102933.
|
30. |
Kastenhuber ER, Lowe SW. Putting p53 in context. Cell, 2017, 170(6): 1062-1078.
|
31. |
Wilson C, Lin JE, Li P, et al. The paracrine hormone for the GUCY2C tumor suppressor, guanylin, is universally lost in colorectal cancer. Cancer Epidemiol Biomarkers Prev, 2014, 23(11): 2328-2337.
|
32. |
McHugh DR, Cotton CU, Moss FJ, et al. Linaclotide improves gastrointestinal transit in cystic fibrosis mice by inhibiting sodium/hydrogen exchanger 3. Am J Physiol Gastrointest Liver Physiol, 2018, 315(5): G868-G878.
|
33. |
Bassotti G, Usai-Satta P, Bellini M. Linaclotide for the treatment of chronic constipation. Expert Opin Pharmacother, 2018, 19(11): 1261-1266.
|
34. |
Brenner DM, Argoff CE, Fox SM, et al. Efficacy and safety of linaclotide for opioid-induced constipation in patients with chronic noncancer pain syndromes from a phase 2 randomized study. Pain, 2020, 161(5): 1027-1036.
|
35. |
Nee JW, Johnston JM, Shea EP, et al. Safety and tolerability of linaclotide for the treatment of chronic idiopathic constipation and irritable bowel syndrome with constipation: pooled phase 3 analysis. Expert Rev Gastroenterol Hepatol, 2019, 13(4): 397-406.
|
36. |
Busby RW, Kessler MM, Bartolini WP, et al. Pharmacologic properties, metabolism, and disposition of linaclotide, a novel therapeutic peptide approved for the treatment of irritable bowel syndrome with constipation and chronic idiopathic constipation. J Pharmacol Exp Ther, 2013, 344(1): 196-206.
|
37. |
Brancale A, Shailubhai K, Ferla S, et al. Therapeutically targeting guanylate cyclase-C: computational modeling of plecanatide, a uroguanylin analog. Pharmacol Res Perspect, 2017, 5(2): e00295.
|
38. |
Brenner DM, Fogel R, Dorn SD, et al. Efficacy, safety, and tolerability of plecanatide in patients with irritable bowel syndrome with constipation: results of two phase 3 randomized clinical trials. Am J Gastroenterol, 2018, 113(5): 735-745.
|
39. |
DeMicco M, Barrow L, Hickey B, et al. Randomized clinical trial: efficacy and safety of plecanatide in the treatment of chronic idiopathic constipation. Therap Adv Gastroenterol, 2017, 10(11): 837-851.
|
40. |
Miner PB Jr, Koltun WD, Wiener GJ, et al. A randomized phaseⅢ clinical trial of plecanatide, a uroguanylin analog, in patients with chronic idiopathic constipation. Am J Gastroenterol, 2017, 112(4): 613-621.
|
41. |
Collins SM. Peripheral mechanisms of symptom generation in irritable bowel syndrome. Can J Gastroenterol, 2001, 15(Suppl B): 14B-16B.
|
42. |
Wald A. Constipation: advances in diagnosis and treatment. JAMA, 2016, 315(2): 185-191.
|