1. |
Maida CD, Norrito RL, Daidone M, et al. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int J Mol Sci, 2020, 21(18): 6454.
|
2. |
Kim JH, Kim SY, Kim B, et al. Prospects of therapeutic target and directions for ischemic stroke. Pharmaceuticals (Basel), 2021, 14(4): 321.
|
3. |
Zhang W, Zhu L, An C, et al. The blood brain barrier in cerebral ischemic injury - disruption and repair. Brain Hemorrhages, 2020, 1(1): 34-53.
|
4. |
Yang C, Hawkins KE, Doré S, et al. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol, 2019, 316(2): C135-C153.
|
5. |
Bernardo-Castro S, Sousa JA, Brás A, et al. Pathophysiology of blood-brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol, 2020, 11: 594672.
|
6. |
Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS, 2020, 17(1): 69.
|
7. |
Xiao M, Xiao ZJ, Yang B, et al. Blood-brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders. Front Neurosci, 2020, 14: 764.
|
8. |
Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders. Front Physiol, 2020, 11: 914.
|
9. |
Patabendige A, Singh A, Jenkins S, et al. Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int J Mol Sci, 2021, 22(8): 4280.
|
10. |
Chen Y, Qin C, Huang J, et al. The role of astrocytes in oxidative stress of central nervous system: a mixed blessing. Cell Prolif, 2020, 53(3): e12781.
|
11. |
Malone K, Amu S, Moore AC, et al. Immunomodulatory therapeutic strategies in stroke. Front Pharmacol, 2019, 10: 630.
|
12. |
Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: effects and mechanisms. CNS Neurosci Ther, 2021, 27(1): 36-47.
|
13. |
Zhang W, Tian T, Gong SX, et al. Microglia-associated neuroinflammation is a potential therapeutic target for ischemic stroke. Neural Regen Res, 2021, 16(1): 6-11.
|
14. |
Jiang X, Andjelkovic AV, Zhu L, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol, 2018(163/164): 144-171.
|
15. |
Jayaraj RL, Azimullah S, Beiram R, et al. Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation, 2019, 16(1): 142.
|
16. |
Michinaga S, Koyama Y. Dual roles of astrocyte-derived factors in regulation of blood-brain barrier function after brain damage. Int J Mol Sci, 2019, 20(3): 571.
|
17. |
He X, Liu Y, Lin X, et al. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice. J Neuroinflammation, 2018, 15(1): 268.
|
18. |
Begum G, Song S, Wang S, et al. Selective knockout of astrocytic Na+ /H+ exchanger isoform 1 reduces astrogliosis, BBB damage, infarction, and improves neurological function after ischemic stroke. Glia, 2018, 66(1): 126-144.
|
19. |
Xu S, Lu J, Shao A, et al. Glial cells: role of the immune response in ischemic stroke. Front Immunol, 2020, 11: 294.
|
20. |
Lu Y, Sareddy GR, Wang J, et al. Neuron-derived estrogen is critical for astrocyte activation and neuroprotection of the ischemic brain. J Neurosci, 2020, 40(38): 7355-7374.
|
21. |
He J, Liu J, Huang Y, et al. Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke. Front Neurosci, 2021, 15: 641157.
|
22. |
Hayakawa K, Esposito E, Wang X, et al. Corrigendum: transfer of mitochondria from astrocytes to neurons after stroke. Nature, 2016, 539(7627): 123.
|
23. |
Hansen RB, Laursen CCH, Nawaz N, et al. Leukocyte TNFR1 and TNFR2 expression contributes to the peripheral immune response in cases with ischemic stroke. Cells, 2021, 10(4): 861.
|
24. |
Huţanu A, Iancu M, Bălaşa R, et al. Predicting functional outcome of ischemic stroke patients in Romania based on plasma CRP, sTNFR-1, D-Dimers, NGAL and NSE measured using a biochip array. Acta Pharmacol Sin, 2018, 39(7): 1228-1236.
|
25. |
Dabrowska S, Andrzejewska A, Lukomska B, et al. Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation, 2019, 16(1): 178.
|
26. |
Denes A, Wilkinson F, Bigger B, et al. Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice. Dis Model Mech, 2013, 6(4): 1043-1048.
|
27. |
Wu MH, Huang CC, Chio CC, et al. Inhibition of peripheral TNF-α and downregulation of microglial activation by alpha-lipoic acid and etanercept protect rat brain against ischemic stroke. Mol Neurobiol, 2016, 53(7): 4961-4971.
|
28. |
Chen AQ, Fang Z, Chen XL, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis, 2019, 10(7): 487.
|
29. |
Huang H, Huang Q, Wang F, et al. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation, 2016, 13(1): 227.
|
30. |
Wong R, Lénárt N, Hill L, et al. Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain Behav Immun, 2019, 76: 126-138.
|
31. |
McCulloch L, Allan SM, Emsley HC, et al. Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res, 2019, 8: 1039.
|
32. |
Serhan A, Aerts JL, Boddeke EWGM, et al. Neuroprotection by insulin-like growth factor-1 in rats with ischemic stroke is associated with microglial changes and a reduction in neuroinflammation. Neuroscience, 2020, 426: 101-114.
|
33. |
Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy?. Acta Neuropathol, 2019, 137(5): 693-714.
|
34. |
Mengel A, Ulm L, Hotter B, et al. Biomarkers of immune capacity, infection and inflammation are associated with poor outcome and mortality after stroke - the PREDICT study. BMC Neurol, 2019, 19(1): 148.
|
35. |
Li X, Lin S, Chen X, et al. The prognostic value of serum cytokines in patients with acute ischemic stroke. Aging Dis, 2019, 10(3): 544-556.
|
36. |
Rochfort KD, Cummins PM. The blood-brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans, 2015, 43(4): 702-706.
|
37. |
Caplan LR, Biller J, Leary MC, et al. Primer on Cerebrovascular Diseases//Ballesteros I, Cuartero MI, Pradillo J, et al. Amsterdam:Elsevier Besloten Vennootschap, 2017: 280-284.
|
38. |
Feng Q, Wang YI, Yang Y. Neuroprotective effect of interleukin-6 in a rat model of cerebral ischemia. Exp Ther Med, 2015, 9(5): 1695-1701.
|
39. |
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res, 2015, 1623: 30-38.
|
40. |
Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: versatile breakers and makers. J Cereb Blood Flow Metab, 2016, 36(9): 1481-1507.
|
41. |
Mechtouff L, Bochaton T, Paccalet A, et al. Matrix metalloproteinase-9 relationship with infarct growth and hemorrhagic transformation in the era of thrombectomy. Front Neurol, 2020, 11: 473.
|
42. |
Zhong C, Yang J, Xu T, et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology, 2017, 89(8): 805-812.
|
43. |
Zhong C, Bu X, Xu T, et al. Serum matrix metalloproteinase-9 and cognitive impairment after acute ischemic stroke. J Am Heart Assoc, 2018, 7(1): e007776.
|
44. |
Che B, Zhong C, Ge J, et al. Serum matrix metalloproteinase-9 is associated with depression after acute ischemic stroke. Circ J, 2019, 83(11): 2303-2311.
|
45. |
Sheng Z, Liu Y, Li H, et al. Efficacy of minocycline in acute ischemic stroke: a systematic review and meta-analysis of rodent and clinical studies. Front Neurol, 2018, 9: 1103.
|
46. |
Victoria ECG, Toscano ECB, Oliveira FMS, et al. Up-regulation of brain cytokines and metalloproteinases 1 and 2 contributes to neurological deficit and brain damage in transient ischemic stroke. Microvasc Res, 2020, 129: 103973.
|
47. |
Montaner J, Ramiro L, Simats A, et al. Matrix metalloproteinases and ADAMs in stroke. Cell Mol Life Sci, 2019, 76(16): 3117-3140.
|
48. |
Wójcik-Stanaszek L, Sypecka J, Szymczak P, et al. The potential role of metalloproteinases in neurogenesis in the gerbil hippocampus following global forebrain ischemia. PLoS One, 2011, 6(7): e22465.
|