1. |
Nas J, Te Grotenhuis R, Bonnes JL, et al. Meta-analysis comparing cardiac arrest outcomes before and after resuscitation guideline updates. Am J Cardiol, 2020, 125(4): 618-629.
|
2. |
Lam V, Hsu CH. Updates in cardiac arrest resuscitation. Emerg Med Clin North Am, 2020, 38(4): 755-769.
|
3. |
Andersen LW, Lind PC, Vammen L, et al. Adult post-cardiac arrest interventions: an overview of randomized clinical trials. Resuscitation, 2020, 147: 1-11.
|
4. |
Perkins GD, Callaway CW, Haywood K, et al. Brain injury after cardiac arrest. Lancet, 2021, 398(10307): 1269-1278.
|
5. |
Cho SH, Kim EY, Choi SJ, et al. Multidetector CT and radiographic findings of lung injuries secondary to cardiopulmonary resuscitation. Injury, 2013, 44(9): 1204-1207.
|
6. |
Cha KC, Kim YW, Kim HI, et al. Parenchymal lung injuries related to standard cardiopulmonary resuscitation. Am J Emerg Med, 2017, 35(1): 117-121.
|
7. |
Johnson NJ, Caldwell E, Carlbom DJ, et al. The acute respiratory distress syndrome after out-of-hospital cardiac arrest: Incidence, risk factors, and outcomes. Resuscitation, 2019, 135: 37-44.
|
8. |
Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest: oxygenation, ventilation, infection, and injury. Chest, 2018, 153(6): 1466-1477.
|
9. |
Jang SJ, Cha YK, Kim JS, et al. Computed tomographic findings of chest injuries following cardiopulmonary resuscitation: more complications for prolonged chest compressions?. Medicine (Baltimore), 2020, 99(33): e21685.
|
10. |
Magliocca A, Rezoagli E, Zani D, et al. Cardiopulmonary resuscitation-associated lung edema (CRALE). A translational study. Am J Respir Crit Care Med, 2021, 203(4): 447-457.
|
11. |
Ondruschka B, Baier C, Bayer R, et al. Chest compression-associated injuries in cardiac arrest patients treated with manual chest compressions versus automated chest compression devices (LUCAS II) - a forensic autopsy-based comparison. Forensic Sci Med Pathol, 2018, 14(4): 515-525.
|
12. |
Gao Y, Sun T, Yuan D, et al. Safety of mechanical and manual chest compressions in cardiac arrest patients: a systematic review and meta-analysis. Resuscitation, 2021, 169: 124-135.
|
13. |
Beitler JR, Ghafouri TB, Jinadasa SP, et al. Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med, 2017, 195(9): 1198-1206.
|
14. |
朱蕾. 机械通气. 4版. 上海:上海科学技术出版社, 2017: 413-414.
|
15. |
Hedenstierna G, Lattuada M. Lymphatics and lymph in acute lung injury. Curr Opin Crit Care, 2008, 14(1): 31-36.
|
16. |
Elmer J, Scutella M, Pullalarevu R, et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med, 2015, 41(1): 49-57.
|
17. |
Nagato AC, Bezerra FS, Lanzetti M, et al. Time course of inflammation, oxidative stress and tissue damage induced by hyperoxia in mouse lungs. Int J Exp Pathol, 2012, 93(4): 269-278.
|
18. |
Helmerhorst HJF, Schouten LRA, Wagenaar GTM, et al. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp, 2017, 5(1): 27.
|
19. |
Shimada I, Kubota A, Katoh M, et al. Hyperoxia causes diffuse alveolar damage through mechanisms involving upregulation of c-Myc/Bax and enhanced production of reactive oxygen species. Respir Investig, 2016, 54(1): 59-68.
|
20. |
Schwingshackl A, Lopez B, Teng B, et al. Hyperoxia treatment of TREK-1/TREK-2/TRAAK-deficient mice is associated with a reduction in surfactant proteins. Am J Physiol Lung Cell Mol Physiol, 2017, 313(6): L1030-L1046.
|
21. |
Tateda K, Deng JC, Moore TA, et al. Hyperoxia mediates acute lung injury and increased lethality in murine legionella pneumonia: the role of apoptosis. J Immunol, 2003, 170(8): 4209-4216.
|
22. |
Kikuchi Y, Tateda K, Fuse ET, et al. Hyperoxia exaggerates bacterial dissemination and lethality in Pseudomonas aeruginosa pneumonia. Pulm Pharmacol Ther, 2009, 22(4): 333-339.
|
23. |
Saito K, Kimura S, Saga T, et al. Protective effect of procysteine on Acinetobacter pneumonia in hyperoxic conditions. J Antimicrob Chemother, 2013, 68(10): 2305-2310.
|
24. |
Damiani E, Donati A, Girardis M. Oxygen in the critically ill: friend or foe?. Curr Opin Anaesthesiol, 2018, 31(2): 129-135.
|
25. |
Mai N, Miller-Rhodes K, Knowlden S, et al. The post-cardiac arrest syndrome: a case for lung-brain coupling and opportunities for neuroprotection. J Cereb Blood Flow Metab, 2019, 39(6): 939-958.
|
26. |
Kuebler WM. Inflammatory pathways and microvascular responses in the lung. Pharmacol Rep, 2005, 57(Suppl): 196-205.
|
27. |
Andonegui G, Bonder CS, Green F, et al. Endothelium-derived toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J Clin Invest, 2003, 111(7): 1011-1020.
|
28. |
Worthen GS, Schwab B 3rd, Elson EL, et al. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science, 1989, 245(4914): 183-186.
|
29. |
Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol, 2013, 13(3): 159-175.
|
30. |
Toung TJ, Chang Y, Lin J, et al. Increases in lung and brain water following experimental stroke: effect of mannitol and hypertonic saline. Crit Care Med, 2005, 33(1): 203-208.
|
31. |
Zhao J, Xuan NX, Cui W, et al. Neurogenic pulmonary edema following acute stroke: the progress and perspective. Biomed Pharmacother, 2020, 130: 110478.
|
32. |
Finsterer J. Neurological perspectives of neurogenic pulmonary edema. Eur Neurol, 2019, 81(1/2): 94-102.
|
33. |
Beitler JR, Malhotra A, Thompson BT. Ventilator-induced lung injury. Clin Chest Med, 2016, 37(4): 633-646.
|
34. |
Mascia L. Acute lung injury in patients with severe brain injury: a double hit model. Neurocrit Care, 2009, 11(3): 417-426.
|
35. |
L’Her E, Cassaz C, Le Gal G, et al. Gut dysfunction and endoscopic lesions after out-of-hospital cardiac arrest. Resuscitation, 2005, 66(3): 331-334.
|
36. |
Dunham GM, Perez-Girbes A, Bolster F, et al. Use of whole body CT to detect patterns of CPR-related injuries after sudden cardiac arrest. Eur Radiol, 2018, 28(10): 4122-4127.
|
37. |
Schulze C, Hoppe H, Schweitzer W, et al. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int, 2013, 233(1/3): 90-98.
|
38. |
Bulger EM, Arneson MA, Mock CN, et al. Rib fractures in the elderly. J Trauma, 2000, 48(6): 1040-1046.
|
39. |
Miller AC, Rosati SF, Suffredini AF, et al. A systematic review and pooled analysis of CPR-associated cardiovascular and thoracic injuries. Resuscitation, 2014, 85(6): 724-731.
|
40. |
Rabl W, Baubin M, Broinger G, et al. Serious complications from active compression-decompression cardiopulmonary resuscitation. Int J Legal Med, 1996, 109(2): 84-89.
|
41. |
Baubin M, Sumann G, Rabl W, et al. Increased frequency of thorax injuries with ACD-CPR. Resuscitation, 1999, 41(1): 33-38.
|
42. |
Pinto DC, Haden-Pinneri K, Love JC. Manual and automated cardiopulmonary resuscitation (CPR): a comparison of associated injury patterns. J Forensic Sci, 2013, 58(4): 904-909.
|
43. |
Zhang MY, Ji XF, Wang S, et al. Shen-fu injection attenuates postresuscitation lung injury in a porcine model of cardiac arrest. Resuscitation, 2012, 83(9): 1152-1158.
|
44. |
Wu C, Xu J, Jin X, et al. Effect of mild hypothermia on lung injury after cardiac arrest in swine based on lung ultrasound. BMC Pulm Med, 2019, 19(1): 198.
|
45. |
Wei J, Wang P, Li Y, et al. Inhibition of RHO kinase by fasudil attenuates ischemic lung injury after cardiac arrest in rats. Shock, 2018, 50(6): 706-713.
|
46. |
He Y, Yao P, Zhou Y, et al. Should “cardiopulmonary resuscitation-associated lung edema” be diagnosed more cautiously?. Am J Respir Crit Care Med, 2021, 204(6): 740-741.
|
47. |
Travers AH, Perkins GD, Berg RA, et al. Part 3: Adult basic life support and automated external defibrillation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation, 2015, 132(16 Suppl 1): S51-S83.
|
48. |
Cho S, Oh WS, Chon SB, et al. Theoretical personalized optimum chest compression point can be determined using posteroanterior chest radiography. Resuscitation, 2018, 128: 97-105.
|
49. |
Stiell IG, Brown SP, Nichol G, et al. What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients?. Circulation, 2014, 130(22): 1962-1970.
|
50. |
Idris AH, Guffey D, Aufderheide TP, et al. Relationship between chest compression rates and outcomes from cardiac arrest. Circulation, 2012, 125(24): 3004-3012.
|
51. |
Duval S, Pepe PE, Aufderheide TP, et al. Optimal combination of compression rate and depth during cardiopulmonary resuscitation for functionally favorable survival. JAMA Cardiol, 2019, 4(9): 900-908.
|
52. |
Jalali A, Simpao AF, Nadkarni VM, et al. A novel nonlinear mathematical model of thoracic wall mechanics during cardiopulmonary resuscitation based on a porcine model of cardiac arrest. J Med Syst, 2017, 41(2): 20.
|
53. |
Braga MS, Dominguez TE, Pollock AN, et al. Estimation of optimal CPR chest compression depth in children by using computer tomography. Pediatrics, 2009, 124(1): e69-e74.
|
54. |
Glatz AC, Nishisaki A, Niles DE, et al. Sternal wall pressure comparable to leaning during CPR impacts intrathoracic pressure and haemodynamics in anaesthetized children during cardiac catheterization. Resuscitation, 2013, 84(12): 1674-1679.
|
55. |
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med, 2000, 342(18): 1301-1308.
|
56. |
Lee Y, Lee SH, Choi HJ, et al. The effect of a modified constant flow insufflation of oxygen during cardiopulmonary resuscitation in a rat model of respiratory cardiac arrest on arterial oxygenation, alveolar barotrauma, and brain tissue injury. Emerg Med Int, 2020, 2020: 8913571.
|
57. |
Eastwood GM, Schneider AG, Suzuki S, et al. Targeted therapeutic mild hypercapnia after cardiac arrest: a phase Ⅱ multi-centre randomised controlled trial (the CCC trial). Resuscitation, 2016, 104: 83-90.
|
58. |
Robba C, Bonatti G, Battaglini D, et al. Mechanical ventilation in patients with acute ischaemic stroke: from pathophysiology to clinical practice. Crit Care, 2019, 23(1): 388.
|
59. |
Eastwood GM, Nichol A. Optimal ventilator settings after return of spontaneous circulation. Curr Opin Crit Care, 2020, 26(3): 251-258.
|
60. |
Abroug F, Ouanes-Besbes L, Elatrous S, et al. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis. Areas of uncertainty and recommendations for research. Intensive Care Med, 2008, 34(6): 1002-1011.
|
61. |
Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med, 2010, 36(4): 585-599.
|
62. |
Galiatsou E, Kostanti E, Svarna E, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med, 2006, 174(2): 187-197.
|
63. |
Papazian L, Gainnier M, Marin V, et al. Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med, 2005, 33(10): 2162-2171.
|
64. |
Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med, 2013, 368(23): 2159-2168.
|
65. |
Xu J, Chen Q, Jin X, et al. Early initiation of continuous renal replacement therapy induces fast hypothermia and improves post-cardiac arrest syndrome in a porcine model. Shock, 2019, 52(4): 456-467.
|
66. |
Chenoune M, Lidouren F, Adam C, et al. Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation, 2011, 124(8): 901-911.
|
67. |
Suh GJ, Kwon WY, Kim KS, et al. Prolonged therapeutic hypothermia is more effective in attenuating brain apoptosis in a Swine cardiac arrest model. Crit Care Med, 2014, 42(2): e132-e142.
|
68. |
Lu X, Ma L, Sun S, et al. The effects of the rate of postresuscitation rewarming following hypothermia on outcomes of cardiopulmonary resuscitation in a rat model. Crit Care Med, 2014, 42(2): e106-e113.
|
69. |
徐杰丰, 吴春双, 陈启江, 等. 经食道降温对猪复苏后肺损伤及全身性炎症反应的影响. 华西医学, 2019, 34(11): 1261-1267.
|
70. |
杨军, 李春盛, 吴彩军, 等. 参附注射液对窒息法心脏骤停动物模型复苏后肺损伤的影响. 中国中西医结合杂志, 2016, 36(8): 967-974.
|
71. |
Li Y, Wu Y, Wang Z, et al. Fasudil attenuates lipopolysaccharide-induced acute lung injury in mice through the Rho/Rho kinase pathway. Med Sci Monit, 2010, 16(4): BR112-118.
|
72. |
Panchal AR, Berg KM, Hirsch KG, et al. 2019 American Heart Association focused update on advanced cardiovascular life support: use of advanced airways, vasopressors, and extracorporeal cardiopulmonary resuscitation during cardiac arrest: an update to the American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, 2019, 140(24): e881-e894.
|
73. |
Choi DH, Kim YJ, Ryoo SM, et al. Extracorporeal cardiopulmonary resuscitation among patients with out-of-hospital cardiac arrest. Clin Exp Emerg Med, 2016, 3(3): 132-138.
|
74. |
Yannopoulos D, Bartos JA, Martin C, et al. Minnesota resuscitation consortium’s advanced perfusion and reperfusion cardiac life support strategy for out-of-hospital refractory ventricular fibrillation. J Am Heart Assoc, 2016, 5(6): e003732.
|
75. |
Yannopoulos D, Bartos JA, Raveendran G, et al. Coronary artery disease in patients with out-of-hospital refractory ventricular fibrillation cardiac arrest. J Am Coll Cardiol, 2017, 70(9): 1109-1117.
|
76. |
Ling JY, Li CS, Zhang Y, et al. Protective effect of extracorporeal membrane pulmonary oxygenation combined with cardiopulmonary resuscitation on post-resuscitation lung injury. World J Emerg Med, 2021, 12(4): 303-308.
|