1. |
Breslauer DN, Maamari RN, Switz NA, et al. Mobile phone based clinical microscopy for global health applications. PLoS One, 2009, 4(7): e6320.
|
2. |
Ravindran S. Smartphone science: apps test and track infectious diseases. Nature, 2021, 593(7858): 302-303.
|
3. |
Fozouni P, Son S, Díaz de León Derby M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184(2): 323-333.e9.
|
4. |
Chan J, Raju S, Nandakumar R, et al. Detecting middle ear fluid using smartphones. Sci Transl Med, 2019, 11(492): eaav1102.
|
5. |
Valliappan N, Dai N, Steinberg E, et al. Accelerating eye movement research via accurate and affordable smartphone eye tracking. Nat Commun, 2020, 11(1): 4553.
|
6. |
Gan SK, Poon JK. The world of biomedical apps: their uses, limitations, and potential. Scientific Phone Apps and Mobile Devices, 2016, 2(1): 6.
|
7. |
中华人民共和国国务院办公厅. 全国医疗卫生服务体系规划纲要(2015-2020 年). 中国实用乡村医生杂志, 2015, 22(9): 1-11.
|
8. |
中华人民共和国国家卫生和计划生育委员会. 医疗机构设置规划指导原则(2016-2020 年). 中国实用乡村医生杂志, 2017, 24(2): 3-6.
|
9. |
Kwon L, Long KD, Wan Y, et al. Medical diagnostics with mobile devices: comparison of intrinsic and extrinsic sensing. Biotechnol Adv, 2016, 34(3): 291-304.
|
10. |
Vashist SK, Luong JH. Trends in in vitro diagnostics and mobile healthcare. Biotechnol Adv, 2016, 34(3): 137-138.
|
11. |
Russell SM, de la Rica R. Policy considerations for mobile biosensors. ACS Sens, 2018, 3(6): 1059-1068.
|
12. |
谢文照, 龚雪琴, 罗爱静. 我国互联网医疗的发展现状及面临的挑战. 中华医学图书情报杂志, 2016, 25(9): 6-9.
|
13. |
Wang LJ, Sun R, Vasile T, et al. High-throughput optical sensing immunoassays on smartphone. Anal Chem, 2016, 88(16): 8302-8308.
|
14. |
Berg B, Cortazar B, Tseng D, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano, 2015, 9(8): 7857-7866.
|
15. |
Fu Q, Wu Z, Xu F, et al. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor. Lab Chip, 2016, 16(10): 1927-1933.
|
16. |
He H, Liu B, Wen S, et al. Quantitative lateral flow strip sensor using highly doped upconversion nanoparticles. Anal Chem, 2018, 90(21): 12356-12360.
|
17. |
Fu Q, Wu Z, Li X, et al. Novel versatile smart phone based Microplate readers for on-site diagnoses. Biosens Bioelectron, 2016, 81: 524-531.
|
18. |
Fu Q. A smartphone-based multi-wavelength photometer for on-site detection of the liquid colorimetric assays for clinical biochemicalanalyses. Sensor Actuat B-Chem, 2020, 329: 129-266.
|
19. |
Burke AE, Thaler KM, Geva M, et al. Feasibility and acceptability of home use of a smartphone-based urine testing application amongwomen in prenatal care. Am J Obstet Gynecol, 2019, 221(5): 527-528.
|
20. |
Xu H, Xia A, Wang D, et al. An ultraportable and versatile point-of-care DNA testing platform. Sci Adv, 2020, 6(17): eaaz7445.
|
21. |
Kühnemund M, Wei Q, Darai E, et al. Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat Commun, 2017, 8: 13913.
|
22. |
Zhu H, Mavandadi S, Coskun AF, et al. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem, 2011, 83(17): 6641-6647.
|
23. |
D’Ambrosio MV, Bakalar M, Bennuru S, et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med, 2015, 7(286): 286re4.
|
24. |
Uddin MJ, Bhuiyan NH, Hong JH, et al. Smartphone-based fully automated optofluidic device with laser irradiation-induced image whitening. Anal Chem, 2021, 93(16): 6394-6402.
|
25. |
Ceylan Koydemir H, Ozcan A. Smartphones democratize advanced biomedical instruments and foster innovation. Clin Pharmacol Ther, 2018, 104(1): 38-41.
|
26. |
徐欢, 陈鸣. 基于智能手机的微流控芯片及其在病原体检测中的应用. 中华检验医学杂志, 2019, 42(10): 821-826.
|
27. |
Zarei M. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trac-Trend Anal Chem, 2017, 91: 26-41.
|