1. |
Bian F, Sun L, Cai L, et al. Quantum dots from microfluidics for nanomedical application. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2019, 11(5): e1567.
|
2. |
Ferrand A, Siaj M, Claverie JP. Graphene, the Swiss army knife of nanomaterials science. ACS Appl Nano Mater, 2020, 3(8): 7305-7313.
|
3. |
Wagner AM, Knipe JM, Orive G, et al. Quantum dots in biomedical applications. Acta Biomater, 2019, 94(7): 44-63.
|
4. |
Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016.
|
5. |
Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018.
|
6. |
Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots . Nat Biotechnol, 2004, 22(8): 969-976.
|
7. |
Hu J, Wang ZY, Li CC, et al. Advances in single quantum dot-based nanosensors. Chem Commun (Camb), 2017, 53(100): 13284-13295.
|
8. |
Miao Y, Lv J, Li Y, et al. Construction of biomolecular sensors based on quantum dots. RSC Adv, 2016, 6(110): 109009-109022.
|
9. |
Han G, Zhao J, Zhang R, et al. Membrane-penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew Chem Int Ed Engl, 2019, 58(21): 7087-7091.
|
10. |
Liu J, Zhang Q, Xue W, et al. Fluorescence characteristics of aqueous synthesized tin oxide quantum dots for the detection of heavy metal ions in contaminated water. Nanomaterials (Basel), 2019, 9(9): 1294.
|
11. |
Aswani Kumar YVV, Renuka RM, Achuth J, et al. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Adv, 2018, 8(19): 10465-10473.
|
12. |
Geszke-Moritz M, Moritz M. Quantum dots as versatile probes in medical sciences: synthesis, modification and properties. Mater Sci Eng C Mater Biol Appl, 2013, 33(3): 1008-1021.
|
13. |
Badıllı U, Mollarasouli F, Bakirhan NK, et al. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. Trends Analyt Chem, 2020, 131: 116013.
|
14. |
Yao J, Li L, Li P, et al. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. Nanoscale, 2017, 9(36): 13364-13383.
|
15. |
Bilan R, Nabiev I, Sukhanova A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem, 2016, 17(22): 2103-2114.
|
16. |
Lange C, Kalsdorf B, Maurer FP, et al. Tuberculosis. Internist (Berl), 2019, 60(11): 1155-1175.
|
17. |
Gliddon HD, Howes PD, Kaforou M, et al. A nucleic acid strand displacement system for the multiplexed detection of tuberculosis-specific mRNA using quantum dots. Nanoscale, 2016, 8(19): 10087-10095.
|
18. |
Wang S, Kang G, Cui F, et al. Dual-color graphene quantum dots and carbon nanoparticles biosensing platform combined with exonuclease Ⅲ-assisted signal amplification for simultaneous detection of multiple DNA targets. Anal Chim Acta, 2021, 1154: 338346.
|
19. |
Hong CA, Park JC, Na H, et al. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens Bioelectron, 2021, 182: 113110.
|
20. |
Sarita R, Ponmariappan S, Sharma A, et al. Development of immunodetection system for botulinum neurotoxin serotype E. Indian J Med Res, 2018, 147: 603-610.
|
21. |
Wang Y, Schill KM, Fry HC, et al. A quantum dot nanobiosensor for rapid detection of botulinum neurotoxin serotype E. ACS Sens, 2020, 5(7): 2118-2127.
|
22. |
Wang X, Chen W, Yang H, et al. Multimode detection of β-glycosidase and pathogenic bacteria via cation exchange assisted signal amplification. Mikrochim Acta, 2020, 187(8): 453.
|
23. |
Desvignes L, Wolf AJ, Ernst JD. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol, 2012, 188(12): 6205-6215.
|
24. |
Hermansen TS, Thomsen V, Lillebaek T, et al. Non-tuberculous mycobacteria and the performance of interferon gamma release assays in Denmark. PLoS One, 2014, 9(4): e93986.
|
25. |
Liu G, Zhang K, Ma K, et al. Graphene quantum dot based "switch-on" nanosensors for intracellular cytokine monitoring. Nanoscale, 2017, 9(15): 4934-4943.
|
26. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
27. |
Edoo M, Chutturghoon VK, Wusu-Ansah GK, et al. Serum biomarkers AFP, CEA and CA19-9 combined detection for early diagnosis of hepatocellular carcinoma. Iran J Public Health, 2019, 48(2): 314-322.
|
28. |
Qi F, Zhou A, Yan L, et al. The diagnostic value of PIVKA-Ⅱ, AFP, AFP-L3, CEA, and their combinations in primary and metastatic hepatocellular carcinoma. J Clin Lab Anal, 2020, 34(5): e23158.
|
29. |
Wang C, Hou F, Ma Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron, 2015, 68: 156-162.
|
30. |
Brazhnik K, Sokolova Z, Baryshnikova M, et al. Multiplexed analysis of serum breast and ovarian cancer markers by means of suspension bead-quantum dot microarrays. Phys Proc, 2015, 73: 235-240.
|
31. |
Neill US. A conversation with Mary-Claire King. J Clin Invest, 2019, 129(1): 1-3.
|
32. |
Zhang Q, Tian Y, Liang Z, et al. DNA-mediated Au-Au dimer-based surface plasmon coupling electrochemiluminescence sensor for BRCA1 gene detection . Anal Chem, 2021, 93(6): 3308-3314.
|
33. |
Song C, Chen H. Predictive significance of TMRPSS2-ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int, 2018, 18(1): 177.
|
34. |
Lee H, Kim C, Dongjin L, et al. Optical coding of fusion genes using multicolor quantum dots for prostate cancer diagnosis. Int J Nanomedicine, 2017, 12: 4397-4407.
|
35. |
Huang H, Li P, Zhang M, et al. Graphene quantum dots for detecting monomeric amyloid peptides. Nanoscale, 2017, 9(16): 5044-5048.
|
36. |
Zheng Y, Lin J, Xie L, et al. One-step preparation of nitrogen-doped graphene quantum dots with anodic electrochemiluminescence for sensitive detection of hydrogen peroxide and glucose. Front Chem, 2021, 9: 688358.
|
37. |
Chen B, Liu J, Yang T, et al. Development of a portable device for Ag(+) sensing using CdTe QDs as fluorescence probe via an electron transfer process. Talanta, 2019, 191: 357-363.
|
38. |
Sharma P, Mehata MS. Rapid sensing of lead metal ions in an aqueous medium by MoS2 quantum dots fluorescence turn-off. Mater Res Bull, 2020, 131: 110978.
|
39. |
Chen CY, Cheng CT, Lai CW, et al. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem Commun (Camb), 2006(3): 263-265.
|
40. |
Park Y, Jeong S, Kim S. Medically translatable quantum dots for biosensing and imaging. J Photochem Photobiol C Photochem Rev, 2017, 30: 51-70.
|
41. |
Goreham RV, Schroeder KL, Holmes A, et al. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells. Mikrochim Acta, 2018, 185(2): 128.
|
42. |
Zhu JL, Tang YF, Wang G, et al. Green, rapid, and universal preparation approach of graphene quantum dots under ultraviolet irradiation. ACS Appl Mater Interfaces, 2017, 9(16): 14470-14477.
|
43. |
Reshma VG, Sabareeswaran A, Rajeev KS, et al. In vitro and in vivo toxicity analysis of zinc selenium/zinc sulfide (ZnSe/ZnS) quantum dots. Food Chem Toxicol, 2020, 145(10): 111718.
|
44. |
Chandrasekaran V, Tessier MD, Dupont D, et al. Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum Dots. Nano Lett, 2017, 17(10): 6104-6109.
|