1. |
中华医学会心血管病学分会心力衰竭学组, 中国医师协会心力衰竭专业委员会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南 2018. 中华心力衰竭和心肌病杂志(中英文), 2018, 2(4): 196-225.
|
2. |
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart. Kardiol Pol, 2016, 74(10): 1037-1147.
|
3. |
Abi-Samra F, Gutterman D. Cardiac contractility modulation: a novel approach for the treatment of heart failure. Heart Fail Rev, 2016, 21(6): 645-660.
|
4. |
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res, 2016, 365(3): 563-581.
|
5. |
González A, Schelbert EB, Díez J, et al. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J Am Coll Cardiol, 2018, 71(15): 1696-1706.
|
6. |
Piek A, Silljé HHW, de Boer RA. The vicious cycle of arrhythmia and myocardial fibrosis. Eur J Heart Fail, 2019, 21(4): 492-494.
|
7. |
Park S, Nguyen NB, Pezhouman A, et al. Cardiac fibrosis: potential therapeutic targets. Transl Res, 2019, 209: 121-137.
|
8. |
Li X, Yang Y, Chen S, et al. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci, 2021, 271: 119186.
|
9. |
Rai V, Sharma P, Agrawal S, et al. Relevance of mouse models of cardiac fibrosis and hypertrophy in cardiac research. Mol Cell Biochem, 2017, 424(1-2): 123-145.
|
10. |
López B, Ravassa S, Moreno MU, et al. Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol, 2021, 18(7): 479-498.
|
11. |
Çelik Ö, Şahin AA, Sarıkaya S, et al. Correlation between serum matrix metalloproteinase and myocardial fibrosis in heart failure patients with reduced ejection fraction: a retrospective analysis. Anatol J Cardiol, 2020, 24(5): 303-308.
|
12. |
Takawale A, Zhang P, Patel VB, et al. Tissue inhibitor of matrix metalloproteinase-1 promotes myocardial fibrosis by mediating CD63-integrin β1 interaction. Hypertension, 2017, 69(6): 1092-1103.
|
13. |
Sato C, Yamamoto Y, Funayama E, et al. Conditioned medium obtained from amnion-derived mesenchymal stem cell culture prevents activation of keloid fibroblasts. Plast Reconstr Surg, 2018, 141(2): 390-398.
|
14. |
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and fibrosis: mitochondrial and metabolic control of cellular differentiation. Circ Res, 2020, 127(3): 427-447.
|
15. |
Ma ZG, Yuan YP, Wu HM, et al. Cardiac fibrosis: new insights into the pathogenesis. Int J Biol Sci, 2018, 14(12): 1645-1657.
|
16. |
Wang H, Liu S, Liu S, et al. Enhanced expression and phosphorylation of Sirt7 activates smad2 and ERK signaling and promotes the cardiac fibrosis differentiation upon angiotensin-Ⅱ stimulation. PLoS One, 2017, 12(6): e178530.
|
17. |
Tian X, Sun C, Wang X, et al. ANO1 regulates cardiac fibrosis via ATI-mediated MAPK pathway. Cell Calcium, 2020, 92: 102306.
|
18. |
Zhou R, Han B, Xia C, et al. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science, 2019, 365(6456): 929-934.
|
19. |
Jain R, Watson U, Vasudevan L, et al. ERK activation pathways downstream of GPCRs. Int Rev Cell Mol Biol, 2018, 338: 79-109.
|
20. |
Kang LL, Zhang DM, Jiao RQ, et al. Pterostilbene attenuates fructose-induced myocardial fibrosis by inhibiting ROS-driven Pitx2c/miR-15b Pathway. Oxid Med Cell Longev, 2019, 2019: 1243215.
|
21. |
Khalil H, Kanisicak O, Prasad V, et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest, 2017, 127(10): 3770-3783.
|
22. |
Henri O, Pouehe C, Houssari M, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation, 2016, 133(15): 1484-1497.
|
23. |
Chen S, Zhang Y, Lighthouse JK, et al. A novel role of cyclic nucleotide phosphodiesterase 10A in pathological cardiac remodeling and dysfunction. Circulation, 2020, 141(3): 217-233.
|
24. |
Yang T, Zhang H, Liang Q, et al. Small-conductance Ca2+-activated potassium channels negatively regulate aldosterone secretion in human adrenocortical cells. Hypertension, 2016, 68(3): 785-795.
|
25. |
Bersi MR, Bellini C, Wu J, et al. Excessive adventitial remodeling leads to early aortic maladaptation in angiotensin-induced hypertension. Hypertension, 2016, 67(5): 890-896.
|
26. |
Froogh G, Pinto JT, Le Y, et al. Chymase-dependent production of angiotensinⅡ: an old enzyme in old hearts. Am J Physiol Heart Circ Physiol, 2017, 312(2): H223-H231.
|
27. |
Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin Ⅱ signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev, 2018, 98(3): 1627-1738.
|
28. |
Chen Z, Oh D, Dubey AK, et al. EGFR family and Src family kinase interactions: mechanics matters?. Curr Opin Cell Biol, 2018, 51: 97-102.
|
29. |
Hu M, He WR, Gao P, et al. Virus-induced accumulation of intracellular bile acids activates the TGR5-β-arrestin-SRC axis to enable innate antiviral immunity. Cell Res, 2019, 29(3): 193-205.
|
30. |
Smith JS, Pack TF, Inoue A, et al. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Science, 2021, 371(6534): eaay1833.
|
31. |
Kazi JU, Rönnstrand L. The role of SRC family kinases in FLT3 signaling. Int J Biochem Cell Biol, 2019, 107: 32-37.
|
32. |
Arkun Y, Yasemi M. Dynamics and control of the ERK signaling pathway: sensitivity, bistability, and oscillations. PloS One, 2018, 13(4): e0195513.
|
33. |
Xie K, Colgan LA, Dao MT, et al. NF1 is a direct G protein effector essential for opioid signaling to Ras in the striatum. Curr Biol, 2016, 26(22): 2992-3003.
|
34. |
Rodríguez-Álvarez FJ, Jiménez-Mora E, Caballero M, et al. Somatostatin activates Ras and ERK1/2 via a G protein βγ-subunit-initiated pathway in thyroid cells. Mol Cell Biochem, 2016, 411(1/2): 253-260.
|
35. |
Cui N, Li L, Feng Q, et al. Hexokinase 2 promotes cell growth and tumor formation through the Raf/MEK/ERK signaling pathway in cervical cancer. Front Oncol, 2020, 10: 581208.
|
36. |
Cheng Y, Zhu Y, Xu J, et al. PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway. Mol Cancer, 2018, 17(1): 13.
|
37. |
Zhou Y, Shiok TC, Richards AM, et al. MicroRNA-101a suppresses fibrotic programming in isolated cardiac fibroblasts and in vivo fibrosis following trans-aortic constriction. J Mol Cell Cardiol, 2018, 121: 266-276.
|
38. |
Ulrich M, Wissenbach U, Thiel G. The super-cooling compound icilin stimulates c-Fos and Egr-1 expression and activity involving TRPM8 channel activation, Ca2+ ion influx and activation of the ternary complex factor Elk-1. Biochem Pharmacol, 2020, 177: 113936.
|
39. |
Tallquist MD. Cardiac Fibroblast Diversity. Annu Rev Physiol, 2020, 82: 63-78.
|
40. |
Tallquist MD, Molkentin JD. Redefining the identity of cardiac fibroblasts. Nat Rev Cardiol, 2017, 14(8): 484-491.
|
41. |
Moore AR, Rosenberg SC, McCormick F, et al. RAS-targeted therapies: is the undruggable drugged. Nat Rev Drug Discov, 2020, 19(8): 533-552.
|
42. |
Li L, Fang H, Yu Y, et al. Liquiritigenin attenuates isoprenaline-induced myocardial fibrosis in mice through the TGF-β1/Smad2 and AKT/ERK signaling pathways. Mol Med Rep, 2021, 24(4): 686.
|
43. |
Marunouchi T, Nakashima M, Ebitani S, et al. Hsp90 inhibitor attenuates the development of pathophysiological cardiac fibrosis in mouse hypertrophy via suppression of the calcineurin-NFAT and c-Raf-Erk Pathways. J Cardiovasc Pharmacol, 2021, 77(6): 822-829.
|
44. |
Chen M, Li H, Wang G, et al. Atorvastatin prevents advanced glycation end products (AGEs)-induced cardiac fibrosis via activating peroxisome proliferator-activated receptor gamma (PPAR-γ). Metabolism, 2016, 65(4): 441-453.
|
45. |
García-Martín A, Navarrete C, Garrido-Rodríguez M, et al. EHP-101 alleviates angiotensin Ⅱ-induced fibrosis and inflammation in mice. Biomed Pharmacother, 2021, 142: 112007.
|
46. |
Feng W, Zhao Y, Song X, et al. Zi Shen Huo Luo Formula prevents aldosterone-induced cardiomyocyte hypertrophy and cardiac fibroblast proliferation by regulating the striatin-mediated MR/EGFR/ERK signaling pathway. Evid Based Complement Alternat Med, 2020, 2020: 9028047.
|
47. |
Meng H, Du Z, Lu W, et al. Baoyuan decoction (BYD) attenuates cardiac hypertrophy through ANKRD1-ERK/GATA4 pathway in heart failure after acute myocardial infarction. Phytomedicine, 2021, 89: 153617.
|
48. |
Han CK, Kuo WW, Shen CY, et al. Dilong prevents the high-KCl cardioplegic solution administration-induced apoptosis in H9c2 cardiomyoblast cells mediated by MEK. Am J Chin Med, 2014, 42(6): 1507-1519.
|