1. |
Ridgeway S, Wilson J, Charlet A, et al. Infection of the surgical site after arthroplasty of the hip. J Bone Joint Surg Br, 2005, 87(6): 844-850.
|
2. |
Olsen MA, Nepple JJ, Riew KD, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am, 2008, 90(1): 62-69.
|
3. |
Mahan J, Seligson D, Henry SL, et al. Factors in pin tract infections. Orthopedics, 1991, 14(3): 305-308.
|
4. |
Lee-Smith J, Santy J, Davis P, et al. Pin site management. Towards a consensus: part 1. J Orthop Nurs, 2001, 5(1): 37-42.
|
5. |
Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol, 2012, 65(2): 158-168.
|
6. |
Nohr RS, Macdonald JG. New biomaterials through surface segregation phenomenon: new quaternary ammonium compounds as antibacterial agents. J Biomater Sci Polym Ed, 1994, 5(6): 607-619.
|
7. |
Nganga S, Travan A, Marsich E, et al. In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants. J Mater Sci Mater Med, 2013, 24(12): 2775-2785.
|
8. |
Tyagi M, Singh H. Preparation and antibacterial evaluation of urinary balloon catheter. Biomed Sci Instrum, 1997, 33: 240-245.
|
9. |
Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res, 2013, 31(8): 1195-1200.
|
10. |
An YH, Stuart GW, McDowell SJ, et al. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro. J Orthop Res, 1996, 14(5): 846-849.
|
11. |
Kelkawi AHA, Abbasi Kajani A, Bordbar AK. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnol, 2017, 11(4): 370-376.
|
12. |
Li Y, Lin Z, Zhao M, et al. Silver nanoparticle based codelivery of oseltamivir to inhibit the activity of the H1N1 influenza virus through ROS-mediated signaling pathways. ACS Appl Mater Interfaces, 2016, 8(37): 24385-24393.
|
13. |
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 7th ed. CLSI document M7-A7. Wayne, PA: Clinical and Laboratory Standards Institute, 2006.
|
14. |
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications. Bone Joint J, 2015, 97-B(5): 582-589.
|
15. |
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol, 2010, 28(11): 580-588.
|
16. |
Yin IX, Zhang J, Zhao IS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine, 2020, 15: 2555-2562.
|
17. |
Xiang Y, Li J, Liu X, et al. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Mater Sci Eng C Mater Biol Appl, 2017, 79: 629-637.
|
18. |
Sato M, Webster TJ. Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications. Expert Rev Med Devices, 2004, 1(1): 105-114.
|
19. |
Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol, 2009, 86(3): 215-223.
|
20. |
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev, 2003, 55(3): 329-347.
|
21. |
Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, et al. Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett, 2013, 8(1): 318.
|
22. |
Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog, 2003, 19(6): 1627-1631.
|
23. |
Mala R, Annie Aglin A, Ruby Celsia AS, et al. Foley catheters functionalised with a synergistic combination of antibiotics and silver nanoparticles resist biofilm formation. IET Nanobiotechnol, 2017, 11(5): 612-620.
|
24. |
Ansari MA, Khan HM, Khan AA, et al. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol, 2015, 33(1): 101-109.
|
25. |
Du J, Singh H, Yi TH. Antibacterial, anti-biofilm and anticancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract. Bioprocess Biosyst Eng, 2016, 39(12): 1923-1931.
|
26. |
Qin H, Cao H, Zhao Y, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 2014, 35(33): 9114-9125.
|
27. |
Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials, 1998, 19(18): 1621-1639.
|
28. |
Arens S, Schlegel U, Printzen G, et al. Influence of materials for fixation implants on local infection. An experimental study of steel versus titanium DCP in rabbits. J Bone Joint Surg Br, 1996, 78(4): 647-651.
|
29. |
Ha KY, Chung YG, Ryoo SJ. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants. Spine (Phila Pa 1976), 2005, 30(1): 38-43.
|
30. |
Schildhauer TA, Robie B, Muhr G, et al. Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials. J Orthop Trauma, 2006, 20(7): 476-484.
|
31. |
Malhotra R, Dhawan B, Garg B, et al. A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop, 2019, 53(1): 148-153.
|
32. |
Pedeferri M. Titanium anodic oxidation: a powerful technique for tailoring surfaces properties for biomedical applications//TMS 2015 144th Annual Meeting & Exhibition. Cham: Springer International Publishing, 2016.
|
33. |
Sharma VK, Sayes CM, Guo B, et al. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Sci Total Environ, 2019, 653: 1042-1051.
|
34. |
Guggenbichler JP, Böswald M, Lugauer S, et al. A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection, 1999, 27(Suppl 1): S16-S23.
|
35. |
Rösch W, Lugauer S. Catheter-associated infections in urology: possible use of silver-impregnated catheters and the Erlanger silver catheter. Infection, 1999, 27(Suppl 1): S74-S77.
|
36. |
Chole RA, Hubbell RN. Antimicrobial activity of silastic tympanostomy tubes impregnated with silver oxide. A double-blind randomized multicenter trial. Arch Otolaryngol Head Neck Surg, 1995, 121(5): 562-565.
|
37. |
Panáček A, Smékalová M, Večeřová R, et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces, 2016, 142: 392-399.
|
38. |
Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci, 2014, 103(7): 1931-1944.
|
39. |
De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34(33): 8333-8343.
|