1. |
Frumm SM, Shimony S, Stone RM, et al. Why do we not have more drugs approved for MDS? A critical viewpoint on novel drug development in MDS. Blood Rev, 2023, 60: 101056.
|
2. |
Otto G. Myelodysplastic syndromes. Nat Rev Dis Primers, 2022, 8(1): 73.
|
3. |
Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211.
|
4. |
Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell, 2022, 185(12): 2016-2034.
|
5. |
Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ, 2022, 29(3): 481-491.
|
6. |
Rahnama S, Bakhshinejad B, Farzam F, et al. Identification of dysregulated competing endogenous RNA networks in glioblastoma: a way toward improved therapeutic opportunities. Life Sci, 2021, 277: 119488.
|
7. |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language?. Cell, 2011, 146(3): 353-358.
|
8. |
Li W, Zhong C, Jiao J, et al. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci, 2017, 18(3): 597.
|
9. |
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell, 2018, 71(3): 428-442.
|
10. |
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol, 2014, 32(5): 453-461.
|
11. |
Liu Z, Wang T, She Y, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer, 2021, 20(1): 105.
|
12. |
Yang C, Wu S, Mou Z, et al. Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther, 2022, 30(3): 1054-1070.
|
13. |
Zhang Y, Jiang J, Zhang J, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer, 2021, 20(1): 101.
|
14. |
Zhang L, Tao H, Li J, et al. Comprehensive analysis of the competing endogenous circRNA-lncRNA-miRNA-mRNA network and identification of a novel potential biomarker for hepatocellular carcinoma. Aging (Albany NY), 2021, 13(12): 15990-16008.
|
15. |
Špringer T, Krejčík Z, Homola J. Detecting attomolar concentrations of microRNA related to myelodysplastic syndromes in blood plasma using a novel sandwich assay with nanoparticle release. Biosens Bioelectron, 2021, 194: 113613.
|
16. |
Zeng Z, Xia L, Fan S, et al. Circular RNA circMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation. Circulation, 2021, 143(4): 354-371.
|
17. |
Cheng X, Sun Q. RUBCNL/pacer and RUBCN/rubicon in regulation of autolysosome formation and lipid metabolism. Autophagy, 2019, 15(6): 1120-1121.
|
18. |
Nozawa T, Sano S, Minowa-Nozawa A, et al. TBC1D9 regulates TBK1 activation through Ca2+ signaling in selective autophagy. Nat Commun, 2020, 11(1): 770.
|
19. |
Mortensen M, Soilleux EJ, Djordjevic G, et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med, 2011, 208(3): 455-467.
|
20. |
Dai W, Liu H, Chen K, et al. Genetic variants in PDSS1 and SLC16A6 of the ketone body metabolic pathway predict cutaneous melanoma-specific survival. Mol Carcinog, 2020, 59(6): 640-650.
|
21. |
丁宇斌, 唐旭东. 骨髓增生异常综合征进展过程中核心基因的生物信息学分析. 临床与实验病理学杂志, 2022, 38(3): 344-347.
|
22. |
González-Arriagada WA, García IE, Martínez-Flores R, et al. Therapeutic perspectives of HIV-associated chemokine receptor (CCR5 and CXCR4) antagonists in carcinomas. Int J Mol Sci, 2022, 24(1): 478.
|
23. |
Zilio S, Bicciato S, Weed D, et al. CCR1 and CCR5 mediate cancer-induced myelopoiesis and differentiation of myeloid cells in the tumor. J Immunother Cancer, 2022, 10(1): e003131.
|