1. |
Wang Y, Sun X. Reevaluation of lock solutions for central venous catheters in hemodialysis: a narrative review. Ren Fail, 2022, 44(1): 1501-1518.
|
2. |
Ullrich H, Münzel T, Gori T. Coronary stent thrombosis- predictors and prevention. Dtsch Arztebl Int, 2020, 117(18): 320-326.
|
3. |
Teja B, Bosch NA, Diep C, et al. Complication rates of central venous catheters: a systematic review and meta-analysis. JAMA Intern Med, 2024, 184(5): 474-482.
|
4. |
Nilius H, Kaufmann J, Cuker A, et al. Comparative effectiveness and safety of anticoagulants for the treatment of heparin-induced thrombocytopenia. Am J Hematol, 2021, 96(7): 805-815.
|
5. |
Geller AI, Shehab N, Lovegrove MC, et al. Bleeding related to oral anticoagulants: trends in US emergency department visits, 2016-2020. Thromb Res, 2023, 225: 110-115.
|
6. |
Brash JL, Horbett TA, Latour RA, et al. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater, 2019, 94: 11-24.
|
7. |
Weber M, Steinle H, Golombek S, et al. Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front Bioeng Biotechnol, 2018, 6: 99.
|
8. |
Jaffer IH, Weitz JI. The blood compatibility challenge. Part 1: Blood-contacting medical devices: the scope of the problem. Acta Biomater, 2019, 94: 2-10.
|
9. |
Visalakshan RM, Macgregor MN, Sasidharan S, et al. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses. ACS Appl Mater Inter, 2019, 11(31): 27615-27623.
|
10. |
Struczyńska M, Firkowska-boden I, Levandovsky N, et al. How crystallographic orientation-induced fibrinogen conformation affects platelet adhesion and activation on TiO2. Adv Healthc Mater, 2023, 12(13): e2202508.
|
11. |
Sang Y, Roest M, de Laat B, et al. Interplay between platelets and coagulation. Blood Rev, 2021, 46: 100733.
|
12. |
Goel A, Tathireddy H, Wang SH, et al. Targeting the contact pathway of coagulation for the prevention and management of medical device-associated thrombosis. Semin Thromb Hemost, 2023.
|
13. |
Skinner SC, Derebail VK, Poulton CJ, et al. Hemodialysis-related complement and contact pathway activation and cardiovascular risk: a narrative review. Kidney Med, 2021, 3(4): 607-618.
|
14. |
Kourtzelis I, Markiewski MM, Doumas M, et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood, 2010, 116(4): 631-639.
|
15. |
Maitz MF, Martins MCL, Grabow N, et al. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: passive and active approaches to guide blood-material interactions. Acta Biomater, 2019, 94: 33-43.
|
16. |
Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res, 2022, 387(3): 391-398.
|
17. |
Elwing H, Welin S, Askendal A, et al. A wettability gradient-method for studies of macromolecular interactions at the liquid solid interface. J Colloid Interface Sci, 1987, 119(1): 203-210.
|
18. |
Fan H, Guo Z. Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci, 2020, 8(6): 1502-1535.
|
19. |
Stallard CP, McDonnell KA, Onayemi OD, et al. Evaluation of protein adsorption on atmospheric plasma deposited coatings exhibiting superhydrophilic to superhydrophobic properties. Biointerphases, 2012, 7(1/2/3/4): 31.
|
20. |
Wang P, Zhang YL, Fu KL, et al. Zinc-coordinated polydopamine surface with a nanostructure and superhydrophilicity for antibiofouling and antibacterial applications. Mater Adv, 2022, 3(13): 5476-5487.
|
21. |
Chang Y. Designs of zwitterionic polymers. J Polym Res, 2022, 29(7): 286.
|
22. |
Cheng CH, Chen GF, Lin JC. Studies of zwitterionic sulfobetaine functionalized polypropylene surface with or without polyethylene glycol spacer: surface characterization, antibacterial adhesion, and platelet compatibility evaluation. J Biomater Sci Polym Ed, 2020, 31(16): 2060-2077.
|
23. |
Huang KT, Hsieh PS, Dai LG, et al. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B, 2020, 8(33): 7390-7402.
|
24. |
Guo LL, Cheng YF, Ren X, et al. Simultaneous deposition of tannic acid and poly(ethylene glycol) to construct the antifouling polymeric coating on titanium surface. Colloids Surf B Biointerfaces, 2021, 200: 111592.
|
25. |
Perrino C, Lee S, Choi SW, et al. A biomimetic alternative to poly(ethylene glycol) as an antifouling coating: resistance to nonspecific protein adsorption of poly(L-lysine)-graft-dextran. Langmuir, 2008, 24(16): 8850-8856.
|
26. |
Yang W, Xue H, LI W, et al. Pursuing “zero” protein adsorption of poly(carboxybetaine) from undiluted blood serum and plasma. Langmuir, 2009, 25(19): 11911-11916.
|
27. |
Tsai WB, Grunkemeier JM, Horbett TA. Human plasma fibrinogen adsorption and platelet adhesion to polystyrene. J Biomed Mater Res, 1999, 44(2): 130-139.
|
28. |
Yao M, Wei Z, Li J, et al. Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices. Nat Commun, 2022, 13(1): 5339.
|
29. |
Klee D, Höcker H. Polymers for biomedical applications: improvement of the interface compatibility//Eastmond GC, Höcker H, Klee D. Biomedical applications polymer blends. Advances in polymer science, vol 149. Berlin, Heidelberg: Springer, 1999: 1-57.
|
30. |
Wu XH, Liew YK, Mai CW, et al. Potential of superhydrophobic surface for blood-contacting medical devices. Int J Mol Sci, 2021, 22(7): 3341.
|
31. |
Chen L, Han D, Jiang L. On improving blood compatibility: from bioinspired to synthetic design and fabrication of biointerfacial topography at micro/nano scales. Colloid Surface B, 2011, 85(1): 2-7.
|
32. |
Toes GJ, Van Muiswinkel KW, Van Oeveren W, et al. Superhydrophobic modification fails to improve the performance of small diameter expanded polytetrafluoroethylene vascular grafts. Biomaterials, 2002, 23(1): 255-262.
|
33. |
Betz T, Toepel I, Pfister K, et al. Impact of chronic kidney disease on the outcomes of infrapopliteal venous, and heparin-bonded expanded polytetrafluoroethylene bypass surgeries: a retrospective cohort study. Vasc Med, 2022, 27(1): 55-62.
|
34. |
Milner KR, Snyder AJ, Siedlecki CA. Sub-micron texturing for reducing platelet adhesion to polyurethane biomaterials. J Biomed Mater Res A, 2006, 76(3): 561-570.
|
35. |
Celik N, Sahin F, Ruzi M, et al. Blood repellent superhydrophobic surfaces constructed from nanoparticle-free and biocompatible materials. Colloids Surf B Biointerfaces, 2021, 205: 111864.
|
36. |
Montgomerie Z, Popat KC. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111503.
|
37. |
Yun GT, Jung WB, Oh MS, et al. Springtail-inspired superomniphobic surface with extreme pressure resistance. Sci Adv, 2018, 4(8): eaat4978.
|
38. |
Leslie DC, Waterhouse A, Berthet JB, et al. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol, 2014, 32(11): 1134-1140.
|
39. |
Roberts TR, Choi JH, Wendorff DS, et al. Tethered liquid perfluorocarbon coating for 72 hour heparin-free extracorporeal life support. ASAIO J, 2021, 67(7): 798-808.
|
40. |
Kuten Pella O, Hornyák I, Horváthy D, et al. Albumin as a biomaterial and therapeutic agent in regenerative medicine. Int J Mol Sci, 2022, 23(18): 10557.
|
41. |
Subramanian A. Corrigendum to “Evaluation of the real-time protein adsorption kinetics on albumin-binding surfaces by dynamic in situ spectroscopic ellipsometry” [TSF 520 (2012) 2200–2207]. Thin Solid Films, 2012, 520(19): 6334.
|
42. |
Gonçalves IC, Martins MC, Barbosa MA, et al. Protein adsorption and clotting time of pHEMA hydrogels modified with C18 ligands to adsorb albumin selectively and reversibly. Biomaterials, 2009, 30(29): 5541-5551.
|
43. |
Freitas SC, Maia S, Figueiredo AC, et al. Selective albumin-binding surfaces modified with a thrombin-inhibiting peptide. Acta Biomater, 2014, 10(3): 1227-1237.
|
44. |
Sivaraman B, Latour RA. Time-dependent conformational changes in adsorbed albumin and its effect on platelet adhesion. Langmuir, 2012, 28(5): 2745-2752.
|
45. |
Marois Y, Chakfé N, Guidoin R, et al. An albumin-coated polyester arterial graft: in vivo assessment of biocompatibility and healing characteristics. Biomaterials, 1996, 17(1): 3-14.
|
46. |
Kudo FA, Nishibe T, Miyazaki K, et al. Albumin-coated knitted dacron aortic prosthses. Study of postoperative inflammatory reactions. Int Angiol, 2002, 21(3): 214-217.
|
47. |
Li R, Li Y, Bai Y, et al. Achieving superior anticoagulation of endothelial membrane mimetic coating by heparin grafting at zwitterionic biocompatible interfaces. Int J Biol Macromol, 2024, 257(Pt 1): 128574.
|
48. |
Zhang Y, Man J, Liu J, et al. Construction of the mussel-inspired PDAM/lysine/heparin composite coating combining multiple anticoagulant strategies. ACS Appl Mater Interfaces, 2023, 15(23): 27719-27731.
|
49. |
Zhang M, Chan CHH, Pauls JP, et al. Investigation of heparin-loaded poly(ethylene glycol)-based hydrogels as anti-thrombogenic surface coatings for extracorporeal membrane oxygenation. J Mater Chem B, 2022, 10(26): 4974-4983.
|
50. |
Özdemir M, Taydas O, Danisan G, et al. Comparison of the complications and long-term results of heparin-coated and non-heparin-coated symmetric-tip hemodialysis catheters. J Vasc Access, 2023: 11297298231202536.
|
51. |
Clark TWI, Jacobs D, Charles HW, et al. Comparison of heparin-coated and conventional split-tip hemodialysis catheters. Cardiovasc Interv Radiol, 2009, 32(4): 703-706.
|
52. |
Jain G, Allon M, Saddekni S, et al. Does heparin coating improve patency or reduce infection of tunneled dialysis catheters?. Clin J Am Soc Nephrol, 2009, 4(11): 1787-1790.
|
53. |
Sobhiyeh M, Bagherhosseini N. Comparison of patency of heparin-coated with non-heparin coated catheters in patients under hemodialysis: a randomized clinical trial. Med Sci, 2019, 23(96): 191-194.
|
54. |
Kasirajan K. Outcomes after heparin-induced thrombocytopenia in patients with Propaten vascular grafts. Ann Vasc Surg, 2012, 26(6): 802-808.
|
55. |
Zhang Y, Zhao Q, Li W, et al. Substrate independent liquid phase epitaxy of HKUST-1 as anticoagulant and antimicrobial coating. Adv Mater Interfaces, 2020, 7(12): 1902011.
|
56. |
Bakola V, Karagkiozaki V, Tsiapla AR, et al. Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents. Nanotechnology, 2018, 29(27): 275101.
|
57. |
Zheng Z, Li X, Dai X, et al. Surface functionalization of anticoagulation and anti-nonspecific adsorption with recombinant hirudin modification. Biomater Adv, 2022, 135: 212741.
|
58. |
Wakai IY, Wang Q, Zhao J, et al. Surface modification of polycarbonate urethane by grafting polyethylene glycol and bivalirudin drug for improving hemocompatibility. Polym Adv Technol, 2023, 34(2): 531-538.
|
59. |
Lukovic D, Nyolczas N, Hemetsberger R, et al. Human recombinant activated protein C-coated stent for the prevention of restenosis in porcine coronary arteries. J Mater Sci Mater, Med, 2015, 26(10): 241.
|
60. |
Chandiwal A, Zaman FS, Mast AE, et al. Factor Xa inhibition by immobilized recombinant tissue factor pathway inhibitor. J Biomater Sci Polym Ed, 2006, 17(9): 1025-1037.
|
61. |
Kaplan MA, Sergienko KV, Kolmakova AA, et al. Development of a biocompatible PLGA polymers capable to release thrombolytic enzyme prourokinase. J Biomater Sci Polym Ed, 2020, 31(11): 1405-1420.
|
62. |
Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord, 2015, 15: 130.
|
63. |
Figueiredo C, Eicke D, Yuzefovych Y, et al. Low immunogenic endothelial cells endothelialize the left ventricular assist device. Sci Rep, 2019, 9(1): 11318.
|
64. |
Govindarajan T, Shandas R. Microgrooves encourage endothelial cell adhesion and organization on shape-memory polymer surfaces. Acs Appl Bio Mater, 2019, 2(5): 1897-1906.
|
65. |
Bedair TM, Min IJ, Park W, et al. Covalent immobilization of fibroblast-derived matrix on metallic stent for expeditious re-endothelialization. J Ind Eng Chem, 2019, 70: 385-393.
|
66. |
Munisso MC, Yamaoka T. Peptide with endothelial cell affinity and antiplatelet adhesion property to improve hemocompatibility of blood-contacting biomaterials. Pept Sci, 2019, 111(5): e24114.
|
67. |
Hou YC, Li JA, Zhu SJ, et al. Tailoring of cardiovascular stent material surface by immobilizing exosomes for better pro-endothelialization function. Colloids Surf B Biointerfaces, 2020, 189: 110831.
|
68. |
Royer C, Guay-begin AA, Chanseau C, et al. Bioactive micropatterning of biomaterials for induction of endothelial progenitor cell differentiation: acceleration of in situ endothelialization. J Biomed Mater Res A, 2020, 108(7): 1479-1492.
|
69. |
Avci-Adali M, Ziemer G, Wendel HP. Induction of EPC homing on biofunctionalized vascular grafts for rapid in vivo self-endothelialization--a review of current strategies. Biotechnol Adv, 2010, 28(1): 119-129.
|