1. |
Ayala Yáñez R, Olaya Guzmán EJ, Haghenbeck Altamirano FJ. Robotics in gynecology. Background, feasibility and applicability. Ginecol Obstet Mex, 2012, 80(6): 409-416.
|
2. |
Steenwyk B, Lyerly R 3rd. Advancements in robotic-assisted thoracic surgery. Anesthesiol Clin, 2012, 30(4): 699-708.
|
3. |
杨明, 高长青, 肖苍松, 等. 机器人微创房间隔缺损修补术54例. 中国体外循环杂志, 2011, 9(4): 214-216.
|
4. |
周汉新, 余小舫, 李富荣, 等. 遥控宙斯机器人胆囊切除术的临床应用. 中华医学杂志, 2005, 85(3): 154-157.
|
5. |
Anderson KM, Ruckle HC, Baldwin DD. Robotic-assisted surgery and the evolution of the radical prostatectomy. Minerva Urol Nefrol, 2012, 64(2): 97-122.
|
6. |
Sim HG, Yip SK, Cheng CW. Equipment and technology in surgical robotics. World J Urol, 2006, 24(2): 128-135.
|
7. |
Tan GY, Goel RK, Kaouk JH, et al. Technological advances in robotic-assisted laparoscopic surgery. Urol Clin North Am, 2009, 36(2): 237-249, ix.
|
8. |
Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature, 2001, 413(6854): 379-380.
|
9. |
Hanly EJ, Talamini MA. Robotic abdominal surgery. Am J Surg, 2004, 188(4A Suppl): 19S-26S.
|
10. |
Oleynikov D. Robotic surgery. Surg Clin North Am, 2008, 88(5): 1121-1130, viii.
|
11. |
Challacombe BJ, Khan MS, Murphy D, et al. The history of robotics in urology. World J Urol, 2006, 24(2): 120-127.
|
12. |
Desgranges P, Bourriez A, Javerliat I, et al. Robotically assisted aorto-femoral bypass grafting: lessons learned from our initial experience. Eur J Vasc Endovasc Surg, 2004, 27(5): 507-511.
|
13. |
Nio D, Diks J, Linsen MA, et al. Robot-assisted laparoscopic aortobifemoral bypass for aortoiliac occlusive disease: early clinical experience. Eur J Vasc Endovasc Surg, 2005, 29(6): 586-590.
|
14. |
Stádler P, Matous P, Vitásek P, et al. Robot-assisted aortoiliac reconstruction: A review of 30 cases. J Vasc Surg, 2006, 44(5): 915-919.
|
15. |
Diks J, Nio D, Jongkind V, et al. Robot-assisted laparoscopic surgery of the infrarenal aorta : the early learning curve. Surg Endosc, 2007, 21(10): 1760-1763.
|
16. |
Stádler P. Role of the robot in totally laparoscopic aortic repair for occlusive and aneurysmal disease. Acta Chir Belg, 2009, 109(3): 300-305.
|
17. |
Kolvenbach R, Schwierz E, Wasilljew S, et al. Total laparoscopically and robotically assisted aortic aneurysm surgery: a critical evaluation. J Vasc Surg, 2004, 39(4): 771-776.
|
18. |
Coggia M, Javerliat I, Di Centa I, et al. Total laparoscopic bypass for aortoiliac occlusive lesions: 93-case experience. J Vasc Surg, 2004, 40(5): 899-906.
|
19. |
Cau J, Ricco JB, Marchand C, et al. Total laparoscopic aortic repair for occlusive and aneurysmal disease: first 95 cases. Eur J Vasc Endovasc Surg, 2006, 31(6): 567-574.
|
20. |
Novotný T, Dvorák M, Staffa R. The learning curve of robot-assisted laparoscopic aortofemoral bypass grafting for aortoiliac occlusive disease. J Vasc Surg, 2011, 53(2): 414-420.
|
21. |
Wisselink W, Cuesta MA, Gracia C, et al. Robot-assisted laparoscopic aortobifemoral bypass for aortoiliac occlusive disease: a report of two cases. J Vasc Surg, 2002, 36(5): 1079-1082.
|
22. |
Lin JC, Reddy DJ, Eun D, et al. Robotic-assisted laparoscopic dissection of the infrarenal aorta and iliac artery: a technical description and early results. Ann Vasc Surg, 2009, 23(3): 298-302.
|
23. |
Lin JC, Kaul SA, Bhandari A, et al. Robotic-assisted aortic surgery with and without minilaparotomy for complicated occlusive disease and aneurysm. J Vasc Surg, 2012, 55(1): 16-22.
|
24. |
ŠTádler P, Dvořáček L, Vitásek P, et al. The application of robotic surgery in vascular medicine. Innovations (Phila), 2012, 7(4): 247-253.
|
25. |
Luke P, Knudsen BE, Nguan CY, et al. Robot-assisted laparoscopic renal artery aneurysm reconstruction. J Vasc Surg, 2006, 44(3): 651-653.
|
26. |
Pietrabissa A, Morelli L, Ferrari M, et al. Mixed reality for robotic treatment of a splenic artery aneurysm. Surg Endosc, 2010, 24(5): 1204.
|
27. |
Lin JC, Eun D, Shrivastava A, et al. Total robotic ligation of inferior mesenteric artery for type II endoleak after endovascular aneurysm repair. Ann Vasc Surg, 2009, 23(2): 255. e19-21.
|
28. |
Mehrabi A, Yetimoglu CL, Nickkholgh A, et al. Development and evaluation of a training module for the clinical introduction of the da Vinci robotic system in visceral and vascular surgery. Surg Endosc, 2006, 20(9): 1376-1382.
|
29. |
Jongkind V, Diks J, Yeung KK, et al. Mid-term results of robot-assisted laparoscopic surgery for aortoiliac occlusive disease. Vascular, 2011, 19(1): 1-7.
|
30. |
Chun KR, Schmidt B, Kokturk B, et al. Catheter ablation-new developments in robotics. Herz, 2008, 33(8): 586-589.
|
31. |
Fu Y, Liu H, Huang W, et al. Steerable catheters in minimally invasive vascular surgery. Int J Med Robot, 2009, 5(4): 381-391.
|
32. |
Ernst S. Robotic approach to catheter ablation. Curr Opin Cardiol, 2008, 23(1): 28-31.
|
33. |
Tillander H. Magnetic guidance of a catheter with articulated steel tip. Acta radiol, 1951, 35(1): 62-64.
|
34. |
Ram W, Meyer H. Heart catheterization in a neonate by interacting magnetic fields: a new and simple method of catheter guidance. Cathet Cardiovasc Diagn, 1991, 22(4): 317-319.
|
35. |
Faddis MN, Blume W, Finney J, et al. Novel, magnetically guided catheter for endocardial mapping and radiofrequency catheter ablation. Circulation, 2002, 106(23): 2980-2985.
|
36. |
Faddis MN, Chen J, Osborn J, et al. Magnetic guidance system for cardiac electrophysiology: a prospective trial of safety and efficacy in humans. J Am Coll Cardiol, 2003, 42(11): 1952-1958.
|
37. |
Riga C, Bicknell C, Hamady MS, et al. Robotically-steerable catheters and their role in the visceral aortic segment. J Cardiovasc Surg (Torino), 2011, 52(3): 353-362.
|
38. |
Saliba W, Cummings JE, Oh S, et al. Novel robotic catheter remote control system: feasibility and safety of transseptal puncture and endocardial catheter navigation. J Cardiovasc Electrophysiol, 2006, 17(10): 1102-1105.
|
39. |
Saliba W, Reddy VY, Wazni O, et al. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol, 2008, 51(25): 2407-2411.
|
40. |
Kanagaratnam P, Koa-Wing M, Wallace DT, et al. Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. J Interv Card Electrophysiol, 2008, 21(1): 19-26.
|
41. |
Bismuth J, Kashef E, Cheshire N, et al. Feasibility and safety of remote endovascular catheter navigation in a porcine model. J Endovasc Ther, 2011, 18(2): 243-249.
|
42. |
Pappone C, Vicedomini G, Manguso F, et al. Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol, 2006, 47(7): 1390-1400.
|
43. |
Iyengar S, Gray WA. Use of magnetic guidewire navigation in the treatment of lower extremity peripheral vascular disease: report of the first human clinical experience. Catheter Cardiovasc Interv, 2009, 73(6): 739-744.
|
44. |
Riga C, Bicknell C, Cheshire N, et al. Initial clinical application of a robotically steerable catheter system in endovascular aneurysm repair. J Endovasc Ther, 2009, 16(2): 149-153.
|
45. |
Carrell T, Dastur N, Salter R, et al. Use of a remotely steerable “robotic” catheter in a branched endovascular aortic graft. J Vasc Surg, 2012, 55(1): 223-225.
|
46. |
Bismuth J, Duran C, Stankovic M, et al. A first-in-man study of the role of flexible robotics in overcoming navigation challenges in the iliofemoral arteries. J Vasc Surg, 2013, 57(2 Suppl): 14S-19S.
|
47. |
Riga CV, Bicknell CD, Wallace D, et al. Robot-assisted antegrade in-situ fenestrated stent grafting. Cardiovasc Intervent Radiol, 2009, 32(3): 522-524.
|
48. |
Riga CV, Rolls A, Rippel R, et al. Advantages and limitations of robotic endovacular catheters for carotid artery stenting. J Cardiovasc Surg (Torino), 2012, 53(6): 747-753.
|