1. |
Li XC, Zhu Y, Xu Y, Wang BB, et al. Osteochondral autograft transplantation with biplanar distal tibial osteotomy for patients with concomitant large osteochondral lesion of the talus and varus ankle malalignment. BMC Musculoskeletal Disorders, 2017, 18(1): 23.
|
2. |
Ramponi L, Yasui Y, Murawski CD, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus. The American Journal of Sports Medicine, 2017, 45(7): 1698-1705.
|
3. |
Kadakia AR, Espinosa N. Why allograft reconstruction for osteochondral lesion of the talus? The osteochondral autograft transfer system seemed to work quite well. Foot and Ankle Clinics, 2013, 18(1): 89-112.
|
4. |
Choi WJ, Jo J, Lee JW. Osteochondral lesion of the talus: prognostic factors affecting the clinical outcome after arthroscopic marrow stimulation technique. Foot and Ankle Clinics, 2013, 18(1): 67-78.
|
5. |
Park J, Chung WY. Osteochondral allograft reconstruction of talar body fracture with a large bone defect. Archives of Orthopaedic and Trauma Surgery, 2016, 136(1): 35-40.
|
6. |
Galli MM, Protzman NM, Bleazey ST, et al. Role of demineralized allograft subchondral bone in the treatment of shoulder lesions of the talus: Clinical results with two-year follow-up. The Journal of Foot and Ankle Surgery, 2015, 54(4): 717-722.
|
7. |
Hannon CP, Smyth NA, Murawski CD, et al. Osteochondral lesions of the talus: aspects of current management. The Bone & Joint Journal, 2014, 96-B(2): 164-171.
|
8. |
Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg (Am), 2013, 95(11): 1045-1054.
|
9. |
McCollum GA, Myerson MS, Jonck J. Managing the cystic osteochondral defect: allograft or autograft. Foot and Ankle Clinics of North America, 2013, 18(1): 113-133.
|
10. |
Hahn DB, Aanstoos ME, Wilkins RM. Osteochondral lesions of the talus treated with fresh talar allografts. Foot & Ankle International, 2010, 31(4): 277-282.
|
11. |
Kura H, Kitaoka HB, Luo ZP, et al. Measurement of surface contact area of the ankle joint. Clin Biomech (Bristol, Avon), 1998, 13(4-5): 365-370.
|
12. |
Millington S, Grabner M, Wozelka R, et al. A stereophotographic study of ankle joint contact area. Journal of Orthopaedic Research, 2007, 25(11): 1465-1473.
|
13. |
van Bergen CJ, Zengerink M, Blankevoort L, et al. Novel metallic implantation technique for osteochondral defects of the medial talar dome. A cadaver study. Acta Orthopaedica, 2010, 81(4): 495-502.
|
14. |
Zhu Y, Xu X. Osteochondral autograft transfer combined with cancellous allografts for large cystic osteochondral defect of the talus. Foot & Ankle International, 2016, 37(10): 1113-1118.
|
15. |
Orr JD, Dunn JC, Heida KA, et al. Results and functional outcomes of structural fresh osteochondral allograft transfer for treatment of osteochondral lesions of the talus in a highly active population. Foot & Ankle Specialist, 2017, 10(2): 125-132.
|
16. |
Vantienderen RJ, Dunn JC, Kusnezov N, et al. Osteochondral allograft transfer for treatment of osteochondral lesions of the talus: A systematic review. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2017, 33(1): 217-222.
|
17. |
van Bergen CJ, Reilingh ML, van Dijk CN. Tertiary osteochondral defect of the talus treated by a novel contoured metal implant. Knee Surgery, Sports Traumatology, Arthroscopy, 2011, 19(6): 999-1003.
|
18. |
Siu TL, Rogers JM, Lin K, et al. Custom-made titanium 3-Dimensional printed interbody cages for treatment of osteoporotic fracture related spinal deformity. World Neurosurgery, 2018, 111: 1-5.
|
19. |
Ma L, Zhou Y, Zhu Y, et al. 3D printed personalized titanium plates improve clinical outcome in microwave ablation of bone tumors around the knee. Scientific Reports, 2017, 7(1): 7626.
|
20. |
Gulati K, Prideaux M, Kogawa M, et al. Anodized 3D-printed titanium implants with dual micro- and nano-scale topography promote interaction with human osteoblasts and osteocyte-like cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(12): 3313-3325.
|
21. |
Arabnejad S, Johnston B, Tanzer M, et al. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. Journal of Orthopaedic Research, 2017, 35(8): 1774-1783.
|
22. |
El-Hajje A, Kolos EC, Wang JK, et al. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications. Journal of Materials Science Materials in Medicine, 2014, 25(11): 2471-2480.
|