1. |
Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng, 2014, 42(2): 323-337.
|
2. |
Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol, 2014, 14(1): 15-56.
|
3. |
Han DK, Hubbell JA. Synthesis of polymer network scaffolds from L-lactide and poly (ethylene glycol) and their interaction with cells. Macromolecules, 1997, 30(20): 6077-6083.
|
4. |
Cook AD, Pajvani UB, Hrkach JS, et al. Colorimetric analysis of surface reactive amino groups on poly (lactic acid-co-lysine): poly (lactic acid) blends. Biomaterials, 1997, 18(21): 1417-1424.
|
5. |
Wang T, Ji X, Jin L, et al. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket. ACS Appl Mater Interfaces, 2013, 5(9): 3757-3763.
|
6. |
Ngiam M, Liao S, Patil AJ, et al. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Tissue Eng Part A, 2009, 15(3): 535-546.
|
7. |
Yang J, Shi G, Bei J, et al. Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res, 2002, 62(3): 438-446.
|
8. |
徐忠华, 吴清玉, 崔福斋. 左旋聚乳酸/卵磷脂共混物膜的血液相容性研究. 中国生物医学工程学报, 2009, 28(4): 628-631.
|
9. |
McKee MG, Layman JM, Cashion MP, et al. Phospholipid nonwoven electrospun membranes. Science, 2006, 311(5759): 353-355.
|
10. |
施雪涛. 骨修复药物控释微球支架的多级构建及干细胞介导分化研究. 广州: 华南理工大学, 2010.
|
11. |
Xu ZH, Wu QY. Effect of lecithin content blend with poly (L-lactic acid) on viability and proliferation of mesenchymal stem cells. Mater Sci Eng C, 2009, 29(5): 1593-1598.
|
12. |
Park SA, Park KE, Kim W. Preparation of sodium alginate/poly (ethylene oxide) blend nanofibers with lecithin. Macromol Res, 2010, 18(9): 891-896.
|
13. |
Zhang M, Wang K, Wang Z, et al. Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. J Mater Sci Mater Med, 2012, 23(11): 2639-2648.
|
14. |
刘道志, 奚廷斐. 微创介入医疗器械与材料产业的现状和发展趋势. 中国医疗器械信息, 2006, 12(12): 1-14.
|
15. |
Zhu N, Cui FZ, Hu K, et al. Biomedical modification of poly(L-lactide) by blending with lecithin. J Biomed Mater Res A, 2007, 82(2): 455-461.
|
16. |
Wang Y, Cui FZ, Jiao YP, et al. Modification of bone graft by blending with lecithin to improve hydrophilicity and biocompatibility. Biomed Mater, 2008, 3(1): 015012.
|
17. |
Miyata T, Masuko T. Crystallization behaviour of poly (L-lactide). Polymer, 1998, 39(22): 5515-5521.
|
18. |
Sosnowski S. Poly (L-lactide) microspheres with controlled crystallinity. Polymer, 2001, 42(2): 637-643.
|
19. |
Shao J D, Chen S, Du C. Citric acid modification of PLLA nano-fibrous scaffolds to enhance cellular adhesion, proliferation and osteogenic differentiation. Journal Of Materials Chemistry B, 2015, 3(26): 5291-5299.
|
20. |
Pan PJ, Zhu B, Kai WH, et al. Polymorphic transition in disordered poly(L-lactide) crystals induced by annealing at elevated temperatures. Macromolecules, 2008, 41(12): 4296-4304.
|
21. |
Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem, 1997, 121(2): 317-324.
|
22. |
Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials, 2000, 21(23): 2347-2359.
|
23. |
He LM, Zhang YQ, Zeng X, et al. Ramakrishna, Fabrication and characterization of poly (L-lactic acid) 3D nanofibrous scaffolds with controlled architecture by liquid-liquid phase separation from a ternary polymer-solvent system. Polymer, 2009, 50(16): 4128-4138.
|
24. |
Shao JD, Chen C, Wang YJ, et al. Early stage structural evolution of PLLA porous scaffolds in thermally induced phase separation process and the corresponding biodegradability and biological property. Polym Degrad Stabil, 2012, 97(6): 955-963.
|
25. |
Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A, 2003, 67(2): 531-537.
|
26. |
Groth T, Altankov G, Klosz K. Adhesion of human peripheral blood lymphocytes is dependent on surface wettability and protein preadsorption. Biomaterials, 1994, 15(6): 423-428.
|
27. |
Dalby MJ, Childs S, Riehle MO, et al. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials, 2003, 24(6): 927-935.
|