1. |
Dall’Oca C, Ricci M, Vecchini E, et al. Evolution of TKA design. Acta Biomed, 2017, 88(2S): 17-31.
|
2. |
Klem NR, Smith A, O’Sullivan P, et al. What influences patient satisfaction after TKA? A qualitative investigation. Clin Orthop Relat Res, 2020, 478(8): 1850-1866.
|
3. |
Jones CW, Jerabek SA. Current role of computer navigation in total knee arthroplasty. J Arthroplasty, 2018, 33(7): 1989-1993.
|
4. |
Mathew KK, Marchand KB, Tarazi JM, et al. Computer-assisted navigation in total knee arthroplasty. Surg Technol Int, 2020, 36: 323-330.
|
5. |
Matsumoto T, Nakano N, Lawrence JE, et al. Current concepts and future perspectives in computer-assisted navigated total knee replacement. Int Orthop, 2019, 43(6): 1337-1343.
|
6. |
Sassoon A, Nam D, Nunley R, et al. Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res, 2015, 473(1): 151-158.
|
7. |
Gong S, Xu W, Wang R, et al. Patient-specific instrumentation improved axial alignment of the femoral component, operative time and perioperative blood loss after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1083-1095.
|
8. |
Pauzenberger L, Munz M, Brandl G, et al. Patient-specific instrumentation improved three-dimensional accuracy in total knee arthroplasty: a comparative radiographic analysis of 1257 total knee arthroplasties. J Orthop Surg Res, 2019, 14(1): 437. doi: 10.1186/s13018-019-1465-6..
|
9. |
王志为, 温亮, 于洋, 等. 个性化截骨工具辅助下运动学对线全膝关节置换的早期临床结果. 中华外科杂志, 2020, 58(6): 457-463.
|
10. |
Saragaglia D, Picard F, Chaussard C, et al. Computer-assisted knee arthroplasty: comparison with a conventional procedure. Results of 50 cases in a prospective randomized study. Rev Chir Orthop Reparatrice Appar Mot, 2001, 87(1): 18-28.
|
11. |
Bouché PA, Corsia S, Dechartres A, et al. Are there differences in accuracy or outcomes scores among navigated, robotic, patient-specific instruments or standard cutting guides in TKA? A network meta-analysis. Clin Orthop Relat Res, 2020, 478(9): 2105-2116.
|
12. |
Kowalski M, Górecki A. Total knee arthroplasty using the OrthoPilot computer-assisted surgical navigation system. Ortop Traumatol Rehabil, 2004, 6(4): 456-460.
|
13. |
冷重光, 赵江涛, 陈崇民, 等. 计算机导航辅助下人工全膝关节置换术. 中华骨科杂志, 2006, 26(10): 666-670.
|
14. |
Li JT, Gao X, Li X. Comparison of iASSIST navigation system with conventional techniques in total knee arthroplasty: A systematic review and meta-analysis of radiographic and clinical outcomes. Orthop Surg, 2019, 11(6): 985-993.
|
15. |
Klatt BA, Goyal N, Austin MS, et al. Custom-fit total knee arthroplasty (OtisKnee) results in malalignment. J Arthroplasty, 2008, 23(1): 26-29.
|
16. |
Pietsch M, Djahani O, Zweiger Ch, et al. Custom-fit minimally invasive total knee arthroplasty: effect on blood loss and early clinical outcomes. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2234-2240.
|
17. |
Ast MP, Nam D, Haas SB. Patient-specific instrumentation for total knee arthroplasty: a review. Orthop Clin North Am, 2012, 43(5): e17-22.
|
18. |
Mattei L, Pellegrino P, Calò M, et al. Patient specific instrumentation in total knee arthroplasty: a state of the art. Ann Transl Med, 2016, 4(7): 126. doi: 10.21037/atm.2016.03.33.
|
19. |
Wong KC. 3D-printed patient-specific applications in orthopedics. Orthop Res Rev, 2016, 8: 57-66.
|
20. |
Tian H, Zhao MW, Geng X, et al. Patient-specific instruments based on knee joint computed tomography and full-length lower extremity radiography in total knee replacement. Chin Med J (Engl), 2018, 131(5): 583-587.
|
21. |
Yan CH, Chiu KY, Ng FY, et al. Comparison between patient-specific instruments and conventional instruments and computer navigation in total knee arthroplasty: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2015, 23(12): 3637-3645.
|
22. |
MacDessi SJ, Jang B, Harris IA, et al. A comparison of alignment using patient specific guides, computer navigation and conventional instrumentation in total knee arthroplasty. Knee, 2014, 21(2): 406-409.
|
23. |
李杨, 田华, 耿霄. 计算机导航系统、3D 打印截骨导板与传统器械对全膝关节置换术手术时间和下肢力线恢复的影响. 中华医学杂志, 2018, 98(27): 2157-2161.
|
24. |
Shi J, Wei Y, Wang S, et al. Computer navigation and total knee arthroplasty. Orthopedics, 2014, 37(1): e39-43.
|
25. |
Thiengwittayaporn S, Kanjanapiboonwong A, Junsee D. Midterm outcomes of electromagnetic computer-assisted navigation in minimally invasive total knee arthroplasty. J Orthop Surg Res, 2013, 8: 37. doi: 10.1186/1749-799X-8-37.
|
26. |
Schmitt J, Hauk C, Kienapfel H, et al. Navigation of total knee arthroplasty: rotation of components and clinical results in a prospectively randomized study. BMC Musculoskelet Disord, 2011, 12: 16. doi: 10.1186/1471-2474-12-16.
|
27. |
徐志宏, 陈东阳, 史冬泉, 等. 计算机导航下与传统人工全膝关节置换术的疗效比较. 中国修复重建外科杂志, 2014, 28(9): 1066-1071.
|
28. |
Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C. A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J, 2013, 95-B(3): 354-359.
|
29. |
Vide J, Freitas TP, Ramos A, et al. Patient-specific instrumentation in total knee arthroplasty: simpler, faster and more accurate than standard instrumentation-a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc, 2017, 25(8): 2616-2621.
|
30. |
Randelli PS, Menon A, Pasqualotto S, et al. Patient-specific instrumentation does not affect rotational alignment of the femoral component and perioperative blood loss in total knee arthroplasty: A prospective, randomized, controlled trial. J Arthroplasty, 2019, 34(7): 1374-1381.
|
31. |
Ollivier M, Tribot-Laspiere Q, Amzallag J, et al. Abnormal rate of intraoperative and postoperative implant positioning outliers using “MRI-based patient-specific” compared to “computer assisted” instrumentation in total knee replacement. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3441-3447.
|
32. |
Roh YW, Kim TW, Lee S, et al. Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res, 2013, 471(12): 3988-3995.
|
33. |
Tandogan RN, Kort NP, Ercin E, et al. Computer-assisted surgery and patient-specific instrumentation improve the accuracy of tibial baseplate rotation in total knee arthroplasty compared to conventional instrumentation: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2021. doi: 10.1007/s00167-021-06495-x.
|
34. |
Yaffe M, Luo M, Goyal N, et al. Clinical, functional, and radiographic outcomes following total knee arthroplasty with patient-specific instrumentation, computer-assisted surgery, and manual instrumentation: a short-term follow-up study. Int J Comput Assist Radiol Surg, 2014, 9(5): 837-844.
|
35. |
Rahm S, Camenzind RS, Hingsammer A, et al. Postoperative alignment of TKA in patients with severe preoperative varus or valgus deformity: is there a difference between surgical techniques? BMC Musculoskelet Disord, 2017, 18(1): 272. doi: 10.1186/s12891-017-1628-8.
|
36. |
田书畅, 姚庆强, 殷信道, 等. iASSIST 智能导航系统与三维打印个性化膝关节截骨导板技术在人工全膝关节置换术中的应用效果比较. 中华外科杂志, 2017, 55(6): 423-429.
|
37. |
Thienpont E, Fennema P, Price A. Can technology improve alignment during knee arthroplasty. Knee, 2013, 20 Suppl 1: S21-28.
|
38. |
Lei K, Liu L, Chen X, et al. Navigation and robotics improved alignment compared with PSI and conventional instrument, while clinical outcomes were similar in TKA: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc, 2021. doi: 10.1007/s00167-021-06436-8.
|
39. |
Zahn RK, Graef F, Conrad JL, et al. Accuracy of tibial positioning in the frontal plane: a prospective study comparing conventional and innovative techniques in total knee arthroplasty. Arch Orthop Trauma Surg, 2020, 140(6): 793-800.
|
40. |
Nam D, Maher PA, Rebolledo BJ, et al. Patient specific cutting guides versus an imageless, computer-assisted surgery system in total knee arthroplasty. Knee, 2013, 20(4): 263-267.
|
41. |
Shihab Z, Clayworth C, Nara N. Handheld, accelerometer-based navigation versus conventional instrumentation in total knee arthroplasty: a meta-analysis. ANZ J Surg, 2020, 90(10): 2068-2079.
|
42. |
Kawaguchi K, Michishita K, Manabe T, et al. Comparison of an accelerometer-based portable navigation system, patient-specific instrumentation, and conventional instrumentation for femoral alignment in total knee arthroplasty. Knee Surg Relat Res, 2017, 29(4): 269-275.
|
43. |
Steinhaus ME, McLawhorn AS, Richardson SS, et al. Handheld navigation device and patient-specific cutting guides result in similar coronal alignment for primary total knee arthroplasty: a retrospective matched cohort study. HSS J, 2016, 12(3): 224-234.
|
44. |
Seon JK, Park HW, Yoo SH, et al. Assessing the accuracy of patient-specific guides for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2016, 24(11): 3678-3683.
|
45. |
Aggarwal AK, Singh N, Sudesh P. Topical vs intravenous tranexamic acid in reducing blood loss after bilateral total knee arthroplasty: A prospective study. J Arthroplasty, 2016, 31(7): 1442-1448.
|
46. |
Abane L, Anract P, Boisgard S, et al. A comparison of patient-specific and conventional instrumentation for total knee arthroplasty: a multicentre randomised controlled trial. Bone Joint J, 2015, 97-B(1): 56-63.
|
47. |
Schnurr C, Csécsei G, Eysel P, et al. The effect of computer navigation on blood loss and transfusion rate in TKA. Orthopedics, 2010, 33(7): 474. doi: 10.3928/01477447-20100526-08.
|
48. |
Cucchi D, Menon A, Zanini B, et al. Patient-specific instrumentation affects perioperative blood loss in total knee arthroplasty. J Knee Surg, 2019, 32(6): 483-489.
|
49. |
Cundy WJ, Theodoulou A, Ling CM, et al. Blood loss in total knee arthroplasty. J Knee Surg, 2017, 30(5): 452-459.
|
50. |
李杨, 耿霄, 田华, 等. 计算机导航系统和 3D 打印截骨导板对全膝关节置换术失血量的影响. 中华医学杂志, 2020, 100(33): 2601-2606.
|
51. |
Suero EM, Lueke U, Stuebig T, et al. Computer navigation for total knee arthroplasty achieves better postoperative alignment compared to conventional and patient-specific instrumentation in a low-volume setting. Orthop Traumatol Surg Res, 2018, 104(7): 971-975.
|