1. |
Khalifa AA, Fayez M, Elkady H, et al. The outcome of posterior-stabilized, rotating platform total knee arthroplasty at a minimum ten-year follow-up, a middle east institution experience. J Knee Surg, 2020. doi: 10.1055/s-0040-1716850.
|
2. |
Kim YH, Park JW, Jang YS. Long-term (up to 27 years) prospective, randomized study of mobile-bearing and fixed-bearing total knee arthroplasties in patients <60 years of age with osteoarthritis. J Arthroplasty, 2021, 36(4): 1330-1335.
|
3. |
Kim YH, Park JW, Jang YS. 20-year minimum outcomes and survival rate of high-flexion versus standard total knee arthroplasty. J Arthroplasty, 2021, 36(2): 560-565.
|
4. |
Song SJ, Lee JW, Bae DK, et al. Long-term outcomes were similar between hybrid and cemented TKAs performed on paired knees at a minimum 15 years of follow-up. Knee Surg Sports Traumatol Arthrosc, 2021. doi: 10.1007/s00167-021-06463-5.
|
5. |
Zalzal P, Backstein D, Gross AE, et al. Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses. J Arthroplasty, 2006, 21(5): 737-743.
|
6. |
Culp RW, Schmidt RG, Hanks G, et al. Supracondylar fracture of the femur following prosthetic knee arthroplasty. Clin Orthop Relat Res, 1987, (222): 212-222.
|
7. |
Zainul-Abidin S, Lim B, Bin-Abd-Razak HR, et al. Periprosthetic fractures after total knee arthroplasty: the influence of pre-operative mechanical factors versus intraoperative factors. Malays Orthop J, 2019, 13(2): 28-34.
|
8. |
Kawahara S, Mawatari T, Iwamoto Y, et al. Femoral sizer design can increase anterior notching during total knee arthroplasty. Knee, 2016, 23(5): 890-894.
|
9. |
Ritter MA, Thong AE, Keating EM, et al. The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. J Bone Joint Surg (Am), 2005, 87(11): 2411-2414.
|
10. |
Lee JH, Wang SI. Risk of anterior femoral notching in navigated total knee arthroplasty. Clin Orthop Surg, 2015, 7(2): 217-224.
|
11. |
周建华. 三维有限元分析全膝关节置换术后股骨前皮质切迹对股骨髁上应力的影响. 遵义: 遵义医学院, 2018.
|
12. |
孙云波, 刘军, 田峥巍, 等. 全膝关节置换股骨切迹发生因素分析及远期随访研究. 中国矫形外科杂志, 2011, 19(13): 1073-1076.
|
13. |
Puranik HG, Mukartihal R, Patil SS, et al. Does femoral notching during total knee arthroplasty influence periprosthetic fracture. A prospective study. J Arthroplasty, 2019, 34(6): 1244-1249.
|
14. |
Gujarathi N, Putti AB, Abboud RJ, et al. Risk of periprosthetic fracture after anterior femoral notching. Acta Orthop, 2009, 80(5): 553-556.
|
15. |
Charette RS, Sheth NP, Boettner F, et al. Femoral component sizing during total knee arthroplasty: anterior versus posterior referencing. JBJS Rev, 2018, 6(1): e4. doi: 10.2106/JBJS.RVW.17.00051.
|
16. |
Kandhari VK, Desai MM, Bava SS, et al. Digging deeper into the patello-femoral joint: Patello-femoral composite-A new dimension for overstuffing of patello-femoral joint. J Clin Diagn Res, 2017, 11(3): RC04-RC07.
|
17. |
Koh YG, Nam JH, Chung HS, et al. Gender differences exist in rotational anatomy of the distal femur in osteoarthritic knees using MRI. Knee Surg Sports Traumatol Arthrosc, 2020, 28(9): 2990-2997.
|
18. |
Miyasaka T, Saito M, Kurosaia D, et al. Impact of posterior femoral condylar cartilage and posterior intercondylar distance on rotation of femoral component in total knee arthroplasty. BMC Musculoskelet Disord, 2020, 21(1): 498. doi: 10.1186/s12891-020-03537-2.
|
19. |
Heyes TJ, El-Zayat BF, De Corte R, et al. Internal femoral component malrotation in TKA significantly alters tibiofemoral kinematics. Knee Surg Sports Traumatol Arthrosc, 2018, 26(6): 1767-1775.
|
20. |
Page SR, Pinzuti JB, Deakin AH, et al. Profile of the distal femur anterior cortex-a computer-assisted cadaveric study. Orthop Traumatol Surg Res, 2011, 97(8): 821-825.
|
21. |
Middleton SWF, Schranz PJ, Mandalia VI, et al. The largest survivorship and clinical outcomes study of the fixed bearing Stryker Triathlon Partial Knee Replacement-A multi-surgeon, single centre cohort study with a minimum of two years of follow-up. Knee, 2018, 25(4): 732-736.
|
22. |
Ng FY, Jiang XF, Zhou WZ, et al. The accuracy of sizing of the femoral component in total knee replacement. Knee Surg Sports Traumatol Arthrosc, 2013, 21(10): 2309-2313.
|
23. |
Shekhar A, Chandra Krishna C, Patil S, et al. Does increased femoral component size options reduce anterior femoral notching in total knee replacement? J Clin Orthop Trauma, 2020, 11(Suppl 2): S223-S227.
|
24. |
Wangroongsub Y, Cherdtaweesup S. Proper entry point for femoral intramedullary guide in total knee arthroplasty. J Med Assoc Thai, 2009, 92 Suppl 6: S1-5.
|
25. |
Gao X, Sun Y, Chen ZH, et al. Comparison of the accelerometer-based navigation system with conventional instruments for total knee arthroplasty: a propensity score-matched analysis. J Orthop Surg Res, 2019, 14(1): 223. doi: 10.1186/s13018-019-1258-y.
|
26. |
Baier C, Wolfsteiner J, Otto F, et al. Clinical, radiological and survivorship results after ten years comparing navigated and conventional total knee arthroplasty: a matched-pair analysis. Int Orthop, 2017, 41(10): 2037-2044.
|
27. |
Baumbach JA, Willburger R, Haaker R, et al. 10-year survival of navigated versus conventional TKAs: A retrospective study. Orthopedics, 2016, 39(3Suppl): S72-76.
|
28. |
Jones CW, Jerabek SA. Current role of computer navigation in total knee arthroplasty. J Arthroplasty, 2018, 33(7): 1989-1993.
|
29. |
Ikawa T, Takemura S, Kim M, et al. Usefulness of an accelerometer-based portable navigation system in total knee arthroplasty. Bone Joint J, 2017, 99-B(8): 1047-1052.
|
30. |
Church JS, Scandden JE, Gupta RR, et al. Embolic phenomena during computer-assisted and conventional total knee replacement. J Bone Joint Surg (Br), 2007, 89(4): 481-485.
|
31. |
Ko JH, Han CD, Shin KH, et al. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2016, 24(8): 2476-2482.
|
32. |
Minoda Y, Kobayashi A, Iwaki H, et al. The risk of notching the anterior femoral cortex with the use of navigation systems in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2010, 18(6): 718-722.
|
33. |
Minoda Y, Watanabe K, Iwaki H, et al. Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system. J Arthroplasty, 2013, 28(9): 1533-1537.
|
34. |
Ko JH, Han CD, Shin KH, et al. Femur bowing could be a risk factor for implant flexion in conventional total knee arthroplasty and notching in navigated total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2016, 24(8): 2476-2482.
|
35. |
Perlick L, Bäthis H, Tingart M, et al. Navigation in total-knee arthroplasty: CT-based implantation compared with the conventional technique. Acta Orthop Scand, 2004, 75(4): 464-470.
|
36. |
Noble PC, Conditt MA, Cook KF, et al. The John Insall Award: Patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res, 2006, 452: 35-43.
|
37. |
Lombardi AV Jr, Berend KR, Adams JB. Patient-specific approach in total knee arthroplasty. Orthopedics, 2008, 31(9): 927-930.
|
38. |
Dai Y, Scuderi GR, Bischoff JE, et al. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs. Knee Surg Sports Traumatol Arthrosc, 2014, 22(12): 2911-2923.
|
39. |
Ke S, Ran T, He Y, et al. Does patient-specific instrumentation increase the risk of notching in the anterior femoral cortex in total knee arthroplasty? A comparative prospective trial Int Orthop, 2020, 44(12): 2603-2611.
|
40. |
Tang WM, Chiu KY, Kwan MF, et al. Sagittal bowing of the distal femur in Chinese patients who require total knee arthroplasty. J Orthop Res, 2005, 23(1): 41-45.
|
41. |
Koh YG, Hong HT, Lee HY, et al. Influence of variation in sagittal placement of the femoral component after cruciate-retaining total knee arthroplasty. J Knee Surg, 2021, 34(4): 444-451.
|
42. |
Kang KT, Koh YG, Son J, et al. Flexed femoral component improves kinematics and biomechanical effect in posterior stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2019, 27(4): 1174-1181.
|
43. |
Marra MA, Strzelczak M, Heesterbeek PJC, et al. Flexing and downsizing the femoral component is not detrimental to patellofemoral biomechanics in posterior-referencing cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc, 2018, 26(11): 3377-3385.
|
44. |
Yehyawi TM, Callaghan JJ, Pedersen DR, et al. Variances in sagittal femoral shaft bowing in patients undergoing TKA. Clin Orthop Relat Res, 2007, 464: 99-104.
|
45. |
Shawen SB, Belmont PJ, Klemme WR, et al. Osteoporosis and anterior femoral notching in periprosthetic supracondylar femoral fractures: a biomechanical analysis. J Bone Joint Surg (Am), 2003, 85(1): 115-121.
|
46. |
Tsukeoka T, Lee TH. Sagittal flexion of the femoral component affects flexion gap and sizing in total knee arthroplasty. J Arthroplasty, 2012, 27(6): 1094-1099.
|
47. |
Mannan A, Vun J, Lodge C, et al. Increased precision of coronal plane outcomes in robotic-assisted total knee arthroplasty: A systematic review and meta-analysis. Surgeon, 2018, 16(4): 237-244.
|
48. |
柴伟, 谢杰, 张晓岗, 等. 国产全膝关节置换术辅助机器人系统的尸体实验研究. 中国修复重建外科杂志, 2021, 35(4): 409-413.
|
49. |
Seidenstein A, Birminghan M, Faran J, et al. Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation: a cadaveric study. Knee Surg Sports Traumatol Arthroscopy, 2021, 29(3): 859-866.
|