- Department of Orthopedics, the Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot Inner Mongolia, 010000, P. R. China;
Citation: PEI Zhiwei, WANG Jianzhong. Research progress of in-situ three dimensional bio-printing technology for repairing bone and cartilage injuries. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(4): 487-494. doi: 10.7507/1002-1892.202111043 Copy
1. | Ma L, Wang X, Zhao N, et al. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces, 2018, 10(49): 42146-42154. |
2. | Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication, 2019, 11(4): 045002. doi: 10.1088/1758-5090/ab2620. |
3. | Wu D, Wang Z, Wang J, et al. Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment. Stem Cell Res Ther, 2018, 9(1): 331. doi: 10.1186/s13287-018-1064-1. |
4. | Wang C, Ye X, Zhao Y, et al. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication, 2020, 12(3): 035004. doi: 10.1088/1758-5090/ab6d35. |
5. | Dhawan A, Kennedy PM, Rizk EB, et al. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg, 2019, 27(5): e215-e226. |
6. | Vidal L, Kampleitner C, Brennan Ma, et al. Reconstruction of large skeletal defects: Current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol, 2020, 8: 61. doi: 10.3389/fbioe.2020.00061. |
7. | Yang L, Ullah I, Yu K, et al. Bioactive Sr2+/Fe3+ co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication, 2021, 13(3). doi: 10.1088/1758-5090/abcf8d. |
8. | Fernández MP, Witte F, Tozzi G. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects. J Microsc, 2020, 277(3): 179-196. |
9. | Altamirano DE, Noller K, Mihaly E, et al. Recent advances toward understanding the role of transplanted stem cells in tissue-engineered regeneration of musculoskeletal tissues. F1000 Research, 2020. doi: 10.12688/f1000research.21333.1. |
10. | Sithole MN, Kumar P, du Toit LC, et al. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. J Biomed Mater Res A, 2018, 106(5): 1311-1321. |
11. | Omar O, Engstrand T, Kihlström Burenstam Linder L, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A, 2020, 117(43): 26660-26671. |
12. | Hong N, Yang GH, Lee J, et al. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater, 2018, 106(1): 444-459. |
13. | Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater, 2020, 114: 384-394. |
14. | Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep, 2017, 7(1): 9416. doi: 10.1038/s41598-017-10060-3. |
15. | Xu C, Zhang Molino B, Wang X, et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B, 2018, 6(43): 7066-7075. |
16. | Ashammakhi N, Ahadian S, Pountos I, et al. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices, 2019, 21(2): 42. doi: 10.1007/s10544-019-0372-2. |
17. | Agostinacchio F, Mu X, Dirè S, et al. In situ 3D printing: opportunities with silk inks. Trends Biotechnol, 2021, 39(7): 719-730. |
18. | Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med, 2018, 12(3): 611-621. |
19. | Duchi S, Onofrillo C, O’Connell C, et al. Bioprinting stem cells in hydrogel for in situ surgical application: A case for articular cartilage. Methods Mol Biol, 2020, 2140: 145-157. |
20. | 韩倩倩, 王苗苗, 史建峰, 等. 利用生物三维打印技术修复软骨损伤的研究进展. 组织工程与重建外科杂志, 2019, 15(5): 359-361. |
21. | Elkasabgy NA, Mahmoud AA. Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS Pharm Sci Tech, 2019, 20(7): 256. doi: 10.1208/s12249-019-1470-4. |
22. | Olubamiji AD, Zhu N, Chang T, et al. Traditional invasive and synchrotron-based noninvasive assessments of three-dimensional-printed hybrid cartilage constructs in situ. Tissue Eng Part C Methods, 2017, 23(3): 156-168. |
23. | Singh S, Choudhury D, Yu F, et al. In situ bioprinting-Bioprinting from benchside to bedside? Acta Biomater, 2020, 101: 14-25. |
24. | Ma K, Zhao T, Yang L, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. J Adv Res, 2020, 23: 123-132. |
25. | 李文韬, 王金武. 原位生物打印的研究进展与前景. 上海交通大学学报 (医学版), 2021, 41(2): 228-232. |
26. | Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng, 2021, 5(1): 011508. doi: 10.1063/5.0034901. |
27. | Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater, 2020, 113: 1-22. |
28. | Rauf S, Susapto HH, Kahin K, et al. Self-assembling tetrameric peptides allow in situ 3D bioprinting under physiological conditions. J Mater Chem B, 2021, 9(4): 1069-1081. |
29. | Sears C, Mondragon E, Richards ZI, et al. Conditioning of 3D printed nanoengineered ionic-covalent entanglement scaffolds with iP-hMSCs derived matrix. Adv Healthc Mater, 2020, 9(15): e1901580. doi: 10.1002/adhm.201901580. |
30. | Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep, 2019, 9(1): 19987. doi: 10.1038/s41598-019-56117-3. |
31. | Sümbelli Y, Emir Diltemiz S, Say MG, et al. In situ and non-cytotoxic cross-linking strategy for 3D printable biomaterials. Soft Matter, 2021, 17(4): 1008-1015. |
32. | Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, et al. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers (Basel), 2020, 12(9): 1986. doi: 10.3390/polym12091986. |
33. | Guo JL, Kim YS, Mikos AG. Biomacromolecules for tissue engineering: Emerging biomimetic strategies. Biomacromolecules, 2019, 20(8): 2904-2912. |
34. | Wang S, Li R, Li D, et al. Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. J Mater Chem B, 2018, 6(20): 3254-3261. |
35. | Lim KS, Abinzano F, Bernal PN, et al. One-step photoactivation of a dual-functionalized bioink as cell carrier and cartilage-binding glue for chondral regeneration. Adv Healthc Mater, 2020, 9(15): e1901792. doi: 10.1002/adhm.201901792. |
36. | Kim MH, Kim BS, Park H, et al. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int J Biol Macromol, 2018, 109: 57-64. |
37. | Kim MH, Park H, Park WH. Effect of pH and precursor salts on in situ formation of calcium phosphate nanoparticles in methylcellulose hydrogel. Carbohydr Polym, 2018, 191: 176-182. |
38. | Feng Q, Xu J, Zhang K, et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci, 2019, 5(3): 440-450. |
39. | Dias JR, Ribeiro N, Baptista-Silva S, et al. In situ enabling approaches for tissue rgeneration: current challenges and new developments. Front Bioeng Biotechnol, 2020, 8: 85. doi: 10.3389/fbioe.2020.00085. |
40. | Park YL, Park K, Cha JM. 3D-bioprinting strategies based on in situ bone-healing mechanism for vascularized bone tissue engineering. Micromachines (Basel), 2021, 12(3): 287. doi: 10.3390/mi12030287. |
41. | Zhang Y, Wang C, Fu L, et al. Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules, 2019, 24(9): 1669. doi: 10.3390/molecules24091669. |
42. | Naudot M, Garcia Garcia A, Jankovsky N, et al. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects. J Tissue Eng Regen Med, 2020, 14(11): 1570-1580. |
43. | Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater, 2020, 6(5): 1491-1511. |
44. | Ma Y, Hu N, Liu J, et al. Three-dimensional printing of biodegradable piperazine-based polyurethane-urea scaffolds with enhanced osteogenesis for bone regeneration. ACS Appl Mater Interfaces, 2019, 11(9): 9415-9424. |
45. | Nishiguchi A, Kapiti G, Höhner JR, et al. In situ 3D-printing using a bio-ink of protein-photosensitizer conjugates for single-cell manipulation. ACS Appl Bio Mater, 2020, 3(4): 2378-2384. |
46. | Ji X, Yuan X, Ma L, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics, 2020, 10(2): 725-740. |
47. | Whitely M, Cereceres S, Dhavalikar P, et al. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185: 194-204. |
48. | Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep, 2017, 7(1): 1778. doi: 10.1038/s41598-017-01914-x. |
49. | Aisenbrey EA, Tomaschke A, Kleinjan E, et al. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci, 2018, 18(2): 201700267. doi: 10.1002/mabi. 201700267. |
50. | Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci Rep, 2017, 7(1): 5837. doi: 10.1038/s41598-017-05699-x. |
51. | Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 2020, 6(23): eaba7406. doi: 10.1126/sciadv.aba7406. |
52. | Shao H, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic dcaffolds. J Dent Res, 2018, 97(1): 68-76. |
53. | Shao H, Liu A, Ke X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941-2951. |
54. | Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces, 2016, 8(28): 17964-17975. |
55. | Wu L, Zhou C, Zhang B, et al. Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity. ACS Appl Mater Interfaces, 2020, 12(43): 48395-48407. |
56. | Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res, 2020, 30: 75-84. |
57. | He Y, Wang W, Lin S, et al. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater, 2021, 9: 491-507. |
58. | Man K, Brunet MY, Louth S, et al. Development of a bone-mimetic 3D printed Ti6Al4V scaffold to enhance osteoblast-derived extracellular vesicles’ therapeutic efficacy for bone regeneration. Front Bioeng Biotechnol, 2021, 9: 757220. doi: 10.3389/fbioe.2021.757220. |
59. | Shen T, Dai Y, Li X, et al. Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold. ACS Biomater Sci Eng, 2018, 4(6): 1942-1953. |
60. | Chen M, Li Y, Liu S, et al. Hierarchical macro-microporous WPU-ECM scaffolds combined with microfracture promote in situ articular cartilage regeneration in rabbits. Bioact Mater, 2020, 6(7): 1932-1944. |
61. | Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29(18): 185101. doi: 10.1088/1361-6528/aaafa1. |
62. | Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater, 2017, 29(29). doi: 10.1002/adma.201701089. |
63. | Chang NJ, Erdenekhuyag Y, Chou PH, et al. Therapeutic effects of the addition of platelet-rich plasma to bioimplants and early rehabilitation exercise on articular cartilage repair. Am J Sports Med, 2018, 46(9): 2232-2241. |
64. | Gatenholm B, Lindahl C, Brittberg M, et al. Collagen 2A type B induction after 3D bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion. Cartilage, 2021, 13(2 suppl): 1755S-1769S. |
65. | Tarafder S, Brito JA, Minhas S, et al. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication, 2019, 12(1): 015008. doi: 10.1088/1758-5090/ab48ca. |
66. | Wang H, Yuan C, Lin K, et al. Modifying a 3D-printed Ti6Al4V implant with polydopamine coating to improve BMSCs growth, osteogenic differentiation, and in situ osseointegration in vivo. Front Bioeng Biotechnol, 2021, 9: 761911. doi: 10.3389/fbioe.2021.761911. |
67. | Melo P, Montalbano G, Fiorilli S, et al. 3D printing in alginic acid bath of in-situ crosslinked collagen composite scaffolds. Materials (Basel), 2021, 14(21): 6720. doi: 10.3390/ma14216720. |
68. | Deng X, Chen X, Geng F, et al. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. J Nanobiotechnology, 2021, 19(1): 400. doi: 10.1186/s12951-021-01141-7. |
- 1. Ma L, Wang X, Zhao N, et al. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces, 2018, 10(49): 42146-42154.
- 2. Kérourédan O, Hakobyan D, Rémy M, et al. In situ prevascularization designed by laser-assisted bioprinting: effect on bone regeneration. Biofabrication, 2019, 11(4): 045002. doi: 10.1088/1758-5090/ab2620.
- 3. Wu D, Wang Z, Wang J, et al. Development of a micro-tissue-mediated injectable bone tissue engineering strategy for large segmental bone defect treatment. Stem Cell Res Ther, 2018, 9(1): 331. doi: 10.1186/s13287-018-1064-1.
- 4. Wang C, Ye X, Zhao Y, et al. Cryogenic 3D printing of porous scaffolds for in situ delivery of 2D black phosphorus nanosheets, doxorubicin hydrochloride and osteogenic peptide for treating tumor resection-induced bone defects. Biofabrication, 2020, 12(3): 035004. doi: 10.1088/1758-5090/ab6d35.
- 5. Dhawan A, Kennedy PM, Rizk EB, et al. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg, 2019, 27(5): e215-e226.
- 6. Vidal L, Kampleitner C, Brennan Ma, et al. Reconstruction of large skeletal defects: Current clinical therapeutic strategies and future directions using 3D printing. Front Bioeng Biotechnol, 2020, 8: 61. doi: 10.3389/fbioe.2020.00061.
- 7. Yang L, Ullah I, Yu K, et al. Bioactive Sr2+/Fe3+ co-substituted hydroxyapatite in cryogenically 3D printed porous scaffolds for bone tissue engineering. Biofabrication, 2021, 13(3). doi: 10.1088/1758-5090/abcf8d.
- 8. Fernández MP, Witte F, Tozzi G. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects. J Microsc, 2020, 277(3): 179-196.
- 9. Altamirano DE, Noller K, Mihaly E, et al. Recent advances toward understanding the role of transplanted stem cells in tissue-engineered regeneration of musculoskeletal tissues. F1000 Research, 2020. doi: 10.12688/f1000research.21333.1.
- 10. Sithole MN, Kumar P, du Toit LC, et al. A 3D bioprinted in situ conjugated-co-fabricated scaffold for potential bone tissue engineering applications. J Biomed Mater Res A, 2018, 106(5): 1311-1321.
- 11. Omar O, Engstrand T, Kihlström Burenstam Linder L, et al. In situ bone regeneration of large cranial defects using synthetic ceramic implants with a tailored composition and design. Proc Natl Acad Sci U S A, 2020, 117(43): 26660-26671.
- 12. Hong N, Yang GH, Lee J, et al. 3D bioprinting and its in vivo applications. J Biomed Mater Res B Appl Biomater, 2018, 106(1): 444-459.
- 13. Vidal L, Brennan MÁ, Krissian S, et al. In situ production of pre-vascularized synthetic bone grafts for regenerating critical-sized defects in rabbits. Acta Biomater, 2020, 114: 384-394.
- 14. Li L, Yu F, Shi J, et al. In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Sci Rep, 2017, 7(1): 9416. doi: 10.1038/s41598-017-10060-3.
- 15. Xu C, Zhang Molino B, Wang X, et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B, 2018, 6(43): 7066-7075.
- 16. Ashammakhi N, Ahadian S, Pountos I, et al. In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices, 2019, 21(2): 42. doi: 10.1007/s10544-019-0372-2.
- 17. Agostinacchio F, Mu X, Dirè S, et al. In situ 3D printing: opportunities with silk inks. Trends Biotechnol, 2021, 39(7): 719-730.
- 18. Di Bella C, Duchi S, O’Connell CD, et al. In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med, 2018, 12(3): 611-621.
- 19. Duchi S, Onofrillo C, O’Connell C, et al. Bioprinting stem cells in hydrogel for in situ surgical application: A case for articular cartilage. Methods Mol Biol, 2020, 2140: 145-157.
- 20. 韩倩倩, 王苗苗, 史建峰, 等. 利用生物三维打印技术修复软骨损伤的研究进展. 组织工程与重建外科杂志, 2019, 15(5): 359-361.
- 21. Elkasabgy NA, Mahmoud AA. Fabrication strategies of scaffolds for delivering active ingredients for tissue engineering. AAPS Pharm Sci Tech, 2019, 20(7): 256. doi: 10.1208/s12249-019-1470-4.
- 22. Olubamiji AD, Zhu N, Chang T, et al. Traditional invasive and synchrotron-based noninvasive assessments of three-dimensional-printed hybrid cartilage constructs in situ. Tissue Eng Part C Methods, 2017, 23(3): 156-168.
- 23. Singh S, Choudhury D, Yu F, et al. In situ bioprinting-Bioprinting from benchside to bedside? Acta Biomater, 2020, 101: 14-25.
- 24. Ma K, Zhao T, Yang L, et al. Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: An in vivo study. J Adv Res, 2020, 23: 123-132.
- 25. 李文韬, 王金武. 原位生物打印的研究进展与前景. 上海交通大学学报 (医学版), 2021, 41(2): 228-232.
- 26. Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng, 2021, 5(1): 011508. doi: 10.1063/5.0034901.
- 27. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater, 2020, 113: 1-22.
- 28. Rauf S, Susapto HH, Kahin K, et al. Self-assembling tetrameric peptides allow in situ 3D bioprinting under physiological conditions. J Mater Chem B, 2021, 9(4): 1069-1081.
- 29. Sears C, Mondragon E, Richards ZI, et al. Conditioning of 3D printed nanoengineered ionic-covalent entanglement scaffolds with iP-hMSCs derived matrix. Adv Healthc Mater, 2020, 9(15): e1901580. doi: 10.1002/adhm.201901580.
- 30. Galarraga JH, Kwon MY, Burdick JA. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci Rep, 2019, 9(1): 19987. doi: 10.1038/s41598-019-56117-3.
- 31. Sümbelli Y, Emir Diltemiz S, Say MG, et al. In situ and non-cytotoxic cross-linking strategy for 3D printable biomaterials. Soft Matter, 2021, 17(4): 1008-1015.
- 32. Puertas-Bartolomé M, Włodarczyk-Biegun MK, Del Campo A, et al. 3D printing of a reactive hydrogel bio-ink using a static mixing tool. Polymers (Basel), 2020, 12(9): 1986. doi: 10.3390/polym12091986.
- 33. Guo JL, Kim YS, Mikos AG. Biomacromolecules for tissue engineering: Emerging biomimetic strategies. Biomacromolecules, 2019, 20(8): 2904-2912.
- 34. Wang S, Li R, Li D, et al. Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth. J Mater Chem B, 2018, 6(20): 3254-3261.
- 35. Lim KS, Abinzano F, Bernal PN, et al. One-step photoactivation of a dual-functionalized bioink as cell carrier and cartilage-binding glue for chondral regeneration. Adv Healthc Mater, 2020, 9(15): e1901792. doi: 10.1002/adhm.201901792.
- 36. Kim MH, Kim BS, Park H, et al. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration. Int J Biol Macromol, 2018, 109: 57-64.
- 37. Kim MH, Park H, Park WH. Effect of pH and precursor salts on in situ formation of calcium phosphate nanoparticles in methylcellulose hydrogel. Carbohydr Polym, 2018, 191: 176-182.
- 38. Feng Q, Xu J, Zhang K, et al. Dynamic and cell-infiltratable hydrogels as injectable carrier of therapeutic cells and drugs for treating challenging bone defects. ACS Cent Sci, 2019, 5(3): 440-450.
- 39. Dias JR, Ribeiro N, Baptista-Silva S, et al. In situ enabling approaches for tissue rgeneration: current challenges and new developments. Front Bioeng Biotechnol, 2020, 8: 85. doi: 10.3389/fbioe.2020.00085.
- 40. Park YL, Park K, Cha JM. 3D-bioprinting strategies based on in situ bone-healing mechanism for vascularized bone tissue engineering. Micromachines (Basel), 2021, 12(3): 287. doi: 10.3390/mi12030287.
- 41. Zhang Y, Wang C, Fu L, et al. Fabrication and application of novel porous scaffold in situ-loaded graphene oxide and osteogenic peptide by cryogenic 3D printing for repairing critical-sized bone defect. Molecules, 2019, 24(9): 1669. doi: 10.3390/molecules24091669.
- 42. Naudot M, Garcia Garcia A, Jankovsky N, et al. The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects. J Tissue Eng Regen Med, 2020, 14(11): 1570-1580.
- 43. Li Z, Du T, Ruan C, et al. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater, 2020, 6(5): 1491-1511.
- 44. Ma Y, Hu N, Liu J, et al. Three-dimensional printing of biodegradable piperazine-based polyurethane-urea scaffolds with enhanced osteogenesis for bone regeneration. ACS Appl Mater Interfaces, 2019, 11(9): 9415-9424.
- 45. Nishiguchi A, Kapiti G, Höhner JR, et al. In situ 3D-printing using a bio-ink of protein-photosensitizer conjugates for single-cell manipulation. ACS Appl Bio Mater, 2020, 3(4): 2378-2384.
- 46. Ji X, Yuan X, Ma L, et al. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone)/nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics, 2020, 10(2): 725-740.
- 47. Whitely M, Cereceres S, Dhavalikar P, et al. Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels. Biomaterials, 2018, 185: 194-204.
- 48. Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep, 2017, 7(1): 1778. doi: 10.1038/s41598-017-01914-x.
- 49. Aisenbrey EA, Tomaschke A, Kleinjan E, et al. A stereolithography-based 3D printed hybrid scaffold for in situ cartilage defect repair. Macromol Biosci, 2018, 18(2): 201700267. doi: 10.1002/mabi. 201700267.
- 50. Duchi S, Onofrillo C, O’Connell CD, et al. Handheld co-axial bioprinting: Application to in situ surgical cartilage repair. Sci Rep, 2017, 7(1): 5837. doi: 10.1038/s41598-017-05699-x.
- 51. Chen Y, Zhang J, Liu X, et al. Noninvasive in vivo 3D bioprinting. Sci Adv, 2020, 6(23): eaba7406. doi: 10.1126/sciadv.aba7406.
- 52. Shao H, Sun M, Zhang F, et al. Custom repair of mandibular bone defects with 3D printed bioceramic dcaffolds. J Dent Res, 2018, 97(1): 68-76.
- 53. Shao H, Liu A, Ke X, et al. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects. J Mater Chem B, 2017, 5(16): 2941-2951.
- 54. Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces, 2016, 8(28): 17964-17975.
- 55. Wu L, Zhou C, Zhang B, et al. Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity. ACS Appl Mater Interfaces, 2020, 12(43): 48395-48407.
- 56. Li L, Shi J, Ma K, et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects. J Adv Res, 2020, 30: 75-84.
- 57. He Y, Wang W, Lin S, et al. Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation. Bioact Mater, 2021, 9: 491-507.
- 58. Man K, Brunet MY, Louth S, et al. Development of a bone-mimetic 3D printed Ti6Al4V scaffold to enhance osteoblast-derived extracellular vesicles’ therapeutic efficacy for bone regeneration. Front Bioeng Biotechnol, 2021, 9: 757220. doi: 10.3389/fbioe.2021.757220.
- 59. Shen T, Dai Y, Li X, et al. Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold. ACS Biomater Sci Eng, 2018, 4(6): 1942-1953.
- 60. Chen M, Li Y, Liu S, et al. Hierarchical macro-microporous WPU-ECM scaffolds combined with microfracture promote in situ articular cartilage regeneration in rabbits. Bioact Mater, 2020, 6(7): 1932-1944.
- 61. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29(18): 185101. doi: 10.1088/1361-6528/aaafa1.
- 62. Shi W, Sun M, Hu X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater, 2017, 29(29). doi: 10.1002/adma.201701089.
- 63. Chang NJ, Erdenekhuyag Y, Chou PH, et al. Therapeutic effects of the addition of platelet-rich plasma to bioimplants and early rehabilitation exercise on articular cartilage repair. Am J Sports Med, 2018, 46(9): 2232-2241.
- 64. Gatenholm B, Lindahl C, Brittberg M, et al. Collagen 2A type B induction after 3D bioprinting chondrocytes in situ into osteoarthritic chondral tibial lesion. Cartilage, 2021, 13(2 suppl): 1755S-1769S.
- 65. Tarafder S, Brito JA, Minhas S, et al. In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication, 2019, 12(1): 015008. doi: 10.1088/1758-5090/ab48ca.
- 66. Wang H, Yuan C, Lin K, et al. Modifying a 3D-printed Ti6Al4V implant with polydopamine coating to improve BMSCs growth, osteogenic differentiation, and in situ osseointegration in vivo. Front Bioeng Biotechnol, 2021, 9: 761911. doi: 10.3389/fbioe.2021.761911.
- 67. Melo P, Montalbano G, Fiorilli S, et al. 3D printing in alginic acid bath of in-situ crosslinked collagen composite scaffolds. Materials (Basel), 2021, 14(21): 6720. doi: 10.3390/ma14216720.
- 68. Deng X, Chen X, Geng F, et al. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. J Nanobiotechnology, 2021, 19(1): 400. doi: 10.1186/s12951-021-01141-7.