1. |
Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater, 2019, 90: 37-48.
|
2. |
Bacakova L, Filova E, Parizek M, et al. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv, 2011, 29(6): 739-767.
|
3. |
Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv Healthc Mater, 2017, 6(23): 1700612. doi: 10.1002/adhm.201700612.
|
4. |
Humbert P, Brennan MÁ, Davison N, et al. Immune modulation by transplanted calcium phosphate biomaterials and human mesenchymal stromal cells in bone regeneration. Front Immunol, 2019, 10: 663. doi: 10.3389/fimmu.2019.00663.
|
5. |
Walsh MC, Takegahara N, Kim H, et al. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat Rev Rheumatol, 2018, 14(3): 146-156.
|
6. |
Xing F, Xiang Z, Rommens PM, et al. 3D bioprinting for vascularized tissue-engineered bone fabrication. Materials (Basel), 2020, 13(10): 2278. doi: 10.3390/ma13102278.
|
7. |
Abaricia JO, Shah AH, Chaubal M, et al. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials, 2020, 243: 119920. doi: 10.1016/j.biomaterials.2020.119920.
|
8. |
Betz VM, Betz OB, Harris MB, et al. Bone tissue engineering and repair by gene therapy. Front Biosci, 2008, 13: 833-841.
|
9. |
Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J, 2001, Suppl 2: S96-S101.
|
10. |
Habibovic P, Barralet JE. Bioinorganics and biomaterials: bone repair. Acta Biomater, 2011, 7(8): 3013-3026.
|
11. |
Skaggs H, Chellman GJ, Collinge M, et al. Comparison of immune system development in nonclinical species and humans: Closing information gaps for immunotoxicity testing and human translatability. Reprod Toxicol, 2019, 89: 178-188.
|
12. |
Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol, 2008, 181(2): 1232-1244.
|
13. |
Xing F, Li L, Zhou C, et al. Regulation and directing stem cell fate by tissue engineering functional microenvironments: Scaffold physical and chemical cues. Stem Cells Int, 2019, 2019: 2180925. doi: 10.1155/2019/2180925.
|
14. |
Chen Z, Mao X, Tan L, et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials, 2014, 35(30): 8553-8565.
|
15. |
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol, 2012, 8(3): 133-143.
|
16. |
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B, 2020, 8(41): 9404-9427.
|
17. |
Hotchkiss KM, Reddy GB, Hyzy SL, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation. Acta Biomater, 2016, 31: 425-434.
|
18. |
Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng, 2006, 12(8): 2093-2104.
|
19. |
Wu AC, Raggatt LJ, Alexander KA, et al. Unraveling macrophage contributions to bone repair. Bonekey Rep, 2013, 2: 373. doi: 10.1038/bonekey.2013.107.
|
20. |
Negrescu AM, Cimpean A. The state of the art and prospects for osteoimmunomodulatory biomaterials. Materials (Basel), 2021, 14(6): 1357. doi: 10.3390/ma14061357.
|
21. |
Klinge U, Klosterhalfen B, Birkenhauer V, et al. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res, 2002, 103(2): 208-214.
|
22. |
Han Q, Wang C, Chen H, et al. Porous tantalum and titanium in orthopedics: A review. ACS Biomater Sci Eng, 2019, 5(11): 5798-5824.
|
23. |
Zhu Y, Zhang K, Zhao R, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs. Biomaterials, 2017, 147: 133-144.
|
24. |
Dobbenga S, Fratila-Apachitei LE, Zadpoor AA. Nanopattern-induced osteogenic differentiation of stem cells—A systematic review. Acta Biomater, 2016, 46: 3-14.
|
25. |
Chen Z, Bachhuka A, Wei F, et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. Nanoscale, 2017, 9(46): 18129-18152.
|
26. |
Yang C, Zhao C, Wang X, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation. Nanoscale, 2019, 11(38): 17699-17708.
|
27. |
Neacsu P, Mazare A, Schmuki P, et al. Attenuation of the macrophage inflammatory activity by TiO₂ nanotubes via inhibition of MAPK and NF-κB pathways. Int J Nanomedicine, 2015, 10: 6455-6467.
|
28. |
Chen M, Zhang Y, Zhou P, et al. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-κB signaling pathway. Bioact Mater, 2020, 5(4): 880-890.
|
29. |
Zhang J, Luo X, Barbieri D, et al. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics. Acta Biomater, 2014, 10(7): 3254-3263.
|
30. |
Davison NL, Su J, Yuan H, et al. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs. Eur Cell Mater, 2015, 29: 314-329.
|
31. |
Li M, Guo X, Qi W, et al. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics. J Mater Chem B, 2020, 8(9): 1863-1877.
|
32. |
Chen Z, Bachhuka A, Han S, et al. Tuning chemistry and topography of nanoengineered surfaces to manipulate immune response for bone regeneration applications. ACS Nano, 2017, 11(5): 4494-4506.
|
33. |
Xie Y, Hu C, Feng Y, et al. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen Biomater, 2020, 7(3): 233-245.
|
34. |
Vishwakarma A, Bhise NS, Evangelista MB, et al. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol, 2016, 34(6): 470-482.
|
35. |
Kakizawa Y, Lee JS, Bell B, et al. Precise manipulation of biophysical particle parameters enables control of proinflammatory cytokine production in presence of TLR 3 and 4 ligands. Acta Biomater, 2017, 57: 136-145.
|
36. |
Li G, Yang P, Guo X, et al. An in vitro evaluation of inflammation response of titanium functionalized with heparin/fibronectin complex. Cytokine, 2011, 56(2): 208-217.
|
37. |
Bartneck M, Keul HA, Singh S, et al. Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano, 2010, 4(6): 3073-3086.
|
38. |
Neumann S, Burkert K, Kemp R, et al. Activation of the NLRP3 inflammasome is not a feature of all particulate vaccine adjuvants. Immunol Cell Biol, 2014, 92(6): 535-542.
|
39. |
Kamath S, Bhattacharyya D, Padukudru C, et al. Surface chemistry influences implant-mediated host tissue responses. J Biomed Mater Res A, 2008, 86(3): 617-626.
|
40. |
Barbosa JN, Barbosa MA, Aguas AP. Inflammatory responses and cell adhesion to self-assembled monolayers of alkanethiolates on gold. Biomaterials, 2004, 25(13): 2557-2563.
|
41. |
Keselowsky BG, Collard DM, García AJ. Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials, 2004, 25(28): 5947-5954.
|
42. |
Hung CJ, Kao CT, Chen YJ, et al. Antiosteoclastogenic activity of silicate-based materials antagonizing receptor activator for nuclear factor kappaB ligand-induced osteoclast differentiation of murine marcophages. J Endod, 2013, 39(12): 1557-1561.
|
43. |
Chen X, Wang M, Chen F, et al. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater, 2020, 103: 318-332.
|
44. |
Shiwaku Y, Neff L, Nagano K, et al. The crosstalk between osteoclasts and osteoblasts is dependent upon the composition and structure of biphasic calcium phosphates. PLoS One, 2015, 10(7): e0132903. doi: 10.1371/journal.pone.0132903.
|
45. |
Li T, Peng M, Yang Z, et al. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater, 2018, 71: 96-107.
|
46. |
Mansour A, Abu-Nada L, Al-Waeli H, et al. Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater, 2019, 89: 343-358.
|