1. |
Rodríguez-Merchán EC, Davidson DJ, Liddle AD. Recent strategies to combat infections from biofilm-forming bacteria on orthopaedic implants. Int J Mol Sci, 2021, 22(19): 10243. doi: 10.3390/ijms221910243.
|
2. |
Hetrick EM, Schoenfisch MH. Reducing implant-related infections: active release strategies. Chem Soc Rev, 2006, 35(9): 780-789.
|
3. |
Kaasch AJ, Kern WV, Joost I, et al. Effect of clinically uninfected orthopedic implants and pacemakers/AICDs in low-risk Staphylococcus aureus bloodstream infection on crude mortality rate: A post hoc analysis of a large cohort study. Open Forum Infect Dis, 2019, 6(5): ofz170. doi: 10.1093/ofid/ofz170.
|
4. |
Martínez-Pérez M, Conde A, Arenas MA, et al. The “race for the surface” experimentally studied: In vitro assessment of Staphylococcus spp. adhesion and preosteoblastic cells integration to doped Ti-6Al-4V alloys. Colloids Surf B Biointerfaces, 2019, 173: 876-883.
|
5. |
王加兴, 秦晖, 张先龙. 骨科内植物纳米涂层抗菌性能研究进展. 国际骨科学杂志, 2014, 35(2): 83-85.
|
6. |
刘洋, 周君琳. 浅谈骨科植入物的抗感染修饰. 中华临床医师杂志 (电子版), 2012, 6(8): 1982-1985.
|
7. |
Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect, 2001, 49(2): 87-93.
|
8. |
López-Abarrategui C, Figueroa-Espí V, Reyes-Acosta O, et al. Magnetic nanoparticles: new players in antimicrobial peptide therapeutics. Curr Protein Pept Sci, 2013, 14(7): 595-606.
|
9. |
von Eiff C, Kohnen W, Becker K, et al. Modern strategies in the prevention of implant-associated infections. Int J Artif Organs, 2005, 28(11): 1146-1156.
|
10. |
Hofstee MI, Muthukrishnan G, Atkins GJ, et al. Current concepts of osteomyelitis: From pathologic mechanisms to advanced research methods. Am J Pathol, 2020, 190(6): 1151-1163.
|
11. |
Liu S, Chen L, Tan L, et al. A high efficiency approach for a titanium surface antifouling modification: PEG-o-quinone linked with titanium via electron transfer process. J Mater Chem B, 2014, 2(39): 6758-6766.
|
12. |
Liu P, Hao Y, Zhao Y, et al. Surface modification of titanium substrates for enhanced osteogenetic and antibacterial properties. Colloids Surf B Biointerfaces, 2017, 160: 110-116.
|
13. |
张志清, 孙艳华. 氧化锆基台与钛基台细菌黏附的比较. 黑龙江医药科学, 2011, 34(5): 31-32.
|
14. |
Garvin KL, Miyano JA, Robinson D, et al. Polylactide/polyglycolide antibiotic implants in the treatment of osteomyelitis. A canine model. J Bone Joint Surg (Am), 1994, 76(10): 1500-1506.
|
15. |
Turner TM, Urban RM, Gitelis S, et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg (Am), 2001, Suppl 2(Pt 1): 8-18.
|
16. |
Ding H, Chen S, Song WQ, et al. Dimethyloxaloylglycine improves angiogenic activity of bone marrow stromal cells in the tissue-engineered bone. Int J Biol Sci, 2014, 10(7): 746-756.
|
17. |
Berberich CE, Josse J, Laurent F, et al. Dual antibiotic loaded bone cement in patients at high infection risks in arthroplasty: Rationale of use for prophylaxis and scientific evidence. World J Orthop, 2021, 12(3): 119-128.
|
18. |
Jiang N, Dusane DH, Brooks JR, et al. Antibiotic loaded β-tricalcium phosphate/calcium sulfate for antimicrobial potency, prevention and killing efficacy of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Sci Rep, 2021, 11(1): 1446. doi: 10.1038/s41598-020-80764-6.
|
19. |
Tunney MM, Patrick S, Gorman SP, et al. Improved detection of infection in hip replacements. A currently underestimated problem. J Bone Joint Surg (Br), 1998, 80(4): 568-572.
|
20. |
Chang Y, Goldberg VM, Caplan AI. Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clin Orthop Relat Res, 2006, 452: 242-249.
|
21. |
Wahlig H, Dingeldein E. Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand, 1980, 51(1): 49-56.
|
22. |
Berger TJ, Spadaro JA, Chapin SE, et al. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother, 1976, 9(2): 357-358.
|
23. |
Li JX, Wang J, Shen LR, et al. The influence of polyethylene terephthalate surfaces modified by silver ion implantation on bacterial adhesion behavior. Surface & Coatings Technology, 2006, 201(19-20): 8155-8159.
|
24. |
Zhao L, Chu PK, Zhang Y, et al. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater, 2009, 91(1): 470-480.
|
25. |
Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect, 2005, 60(1): 1-7.
|
26. |
Bosetti M, Massè A, Tobin E, et al. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials, 2002, 23(3): 887-892.
|
27. |
Yan Y, Zhang X, Huang Y, et al. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Applied Surface Science, 2014, 314: 348-357.
|
28. |
Akiyama T, Miyamoto H, Yonekura Y, et al. Silver oxide-containing hydroxyapatite coating has in vivo antibacterial activity in the rat tibia. J Orthop Res, 2013, 31(8): 1195-1200.
|
29. |
Nazir KZ, Tayyaba I, Saira R, et al. Antibacterial, magnetic and dielectric properties of nano-structured V doped TiO2 thin films deposited by dip coating technique. Materials Chemistry and Physics, 2021: 267. doi: 10.1016/j.matchemphys.2021.124659.
|
30. |
Kazemzadeh-Narbat M, Lai BF, Ding C, et al. Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials, 2013, 34(24): 5969-5977.
|
31. |
Chua PH, Neoh KG, Kang ET, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials, 2008, 29(10): 1412-1421.
|
32. |
Deupree SM, Schoenfisch MH. Morphological analysis of the antimicrobial action of nitric oxide on gram-negative pathogens using atomic force microscopy. Acta Biomater, 2009, 5(5): 1405-1415.
|
33. |
Li M, Aveyard J, Fleming G, et al. Nitric oxide releasing titanium surfaces for antimicrobial bone-integrating orthopedic implants. ACS Appl Mater Interfaces, 2020, 12(20): 22433-22443.
|
34. |
Nablo BJ, Schoenfisch MH. Antibacterial properties of nitric oxide-releasing sol-gels. J Biomed Mater Res A, 2003, 67(4): 1276-1283.
|
35. |
Babensee JE, Stein MM, Moore L. Interconnections between inflammatory and immune responses in tissue engineering. Ann N Y Acad Sci, 2002, 961: 360-363.
|
36. |
Scott MG, Dullaghan E, Mookherjee N, et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol, 2007, 25(4): 465-472.
|
37. |
Bowdish DM, Davidson DJ, Lau YE, et al. Impact of LL-37 on anti-infective immunity. J Leukoc Biol, 2005, 77(4): 451-459.
|
38. |
Zhao DW, Zuo KQ, Wang K, et al. Interleukin-4 assisted calcium-strontium-zinc-phosphate coating induces controllable macrophage polarization and promotes osseointegration on titanium implant. Mater Sci Eng C Mater Biol Appl, 2021, 118: 111512. doi: 10.1016/j.msec.2020.111512.
|
39. |
Lim HJ, Shin HS. Antimicrobial and immunomodulatory effects of bifidobacterium strains: A review. J Microbiol Biotechnol, 2020, 30(12): 1793-1800.
|
40. |
韩倞, 杨轶, 张弛, 等. 骨科植入物表面抗感染修饰及其骨整合性的研究进展. 中国临床医学, 2017, 24(1): 134-140.
|
41. |
Xue C, Song X, Liu M, et al. A highly efficient, low-toxic, wide-spectrum antibacterial coating designed for 3D printed implants with tailorable release properties. J Mater Chem B, 2017, 5(22): 4128-4136.
|
42. |
Liu J, Yao X, Ye J, et al. A printing-spray-transfer process for attaching biocompatible and antibacterial coatings to the surfaces of patient-specific silicone stents. Biomed Mater, 2020, 15(5): 055036. doi: 10.1088/1748-605X/ab99d6.
|
43. |
Wang BB, Quan YH, Xu ZM, et al. Preparation of highly effective antibacterial coating with polydopamine/chitosan/silver nanoparticles via simple immersion. Progress in Organic Coatings, 2020: 149. doi: 10.1016/j.porgcoat.2020.105967.
|
44. |
Gouveia Z, Perinpanayagam H, Zhu J. Development of robust chitosan—silica class Ⅱ hybrid coatings with antimicrobial properties for titanium implants. Coatings, 2020, 10(6). doi: 10.3390/coatings10060534.
|
45. |
Sasmita M, Ankita A, Abhijit M. Surface immobilization of a short antimicrobial peptide (AMP) as an antibacterial coating. Materialia, 2019: 6. doi: 10.1016/j.mtla.2019.100350.
|
46. |
de Breij A, Riool M, Kwakman PH, et al. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release, 2016, 222: 1-8.
|
47. |
李健, 王颖, 高新蕾. 智能涂层——类生物表面活性智能涂层. 材料保护, 2006, 39(1): 36-39.
|
48. |
Sang S, Guo G, Yu J, et al. Antibacterial application of gentamicin-silk protein coating with smart release function on titanium, polyethylene, and Al2O3 materials. Mater Sci Eng C Mater Biol Appl, 2021, 124: 112069. doi: 10.1016/j.msec.2021.112069.
|
49. |
Zhang Y, Hu K, Xing X, et al. Smart titanium coating composed of antibiotic conjugated peptides as an infection-responsive antibacterial agent. Macromol Biosci, 2021, 21(1): e2000194. doi: 10.1002/mabi.202000194.
|
50. |
Pornpattananangkul D, Zhang L, Olson S, et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc, 2011, 133(11): 4132-4139.
|