1. |
Zhou K, Yang H. Effects of bone-plate material on the predicted stresses in the tibial shaft comminuted fractures: A finite element analysis. J Invest Surg, 2022, 35(1): 132-140.
|
2. |
Chen Z, Yan X, Yin S, et al. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl, 2020, 106: 110289. doi: 10.1016/j.msec.2019.110289.
|
3. |
Ødegaard KS, Ouyang L, Ma Q, et al. Revealing the influence of electron beam melted Ti-6Al-4V scaffolds on osteogenesis of human bone marrow-derived mesenchymal stromal cells. J Mater Sci Mater Med, 2021, 32(9): 97. doi: 10.1007/s10856-021-06572-0.
|
4. |
Zheng Y, Han Q, Wang J, et al. Promotion of osseointegration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D printing. ACS Biomater Sci Eng, 2020, 6(9): 5181-5190.
|
5. |
Yang G, Guo C, Zhang Y, et al. Design method of porous titanium alloy based on meta-structure. Integrated Ferroelectrics, 2021, 215(1): 149-165.
|
6. |
Yamanoglu R, Bahador A, Kondoh K. Fabrication methods of porous titanium implants by powder metallurgy. Transactions of the Indian Institute of Metals, 2021, 74(11): 2555-2567.
|
7. |
张永弟, 王琮瑜, 王琮玮, 等. 增材制造医用多孔钛合金研究与应用现状. 河北科技大学学报, 2021, 42(6): 601-612.
|
8. |
Zhang Y, Sun N, Zhu M, et al. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater Adv, 2022, 133: 112651. doi: 10.1016/j.msec.2022.112651.
|
9. |
Wang Z, Yao R, Wang D, et al. Structure design and biological evaluation of the mechanical-adaptive titanium-based porous implants. Materials Technology, 2021, 36(14): 851-856.
|
10. |
Bocchetta P, Chen LY, Tardelli JDC, et al. Passive layers and corrosion resistance of biomedical Ti-6Al-4V and β-Ti alloys. Coatings, 2021, 11(5): 487. doi: 10.3390/coatings11050487.
|
11. |
Le Clerc N, Baudouin R, Carlevan M, et al. 3D titanium implant for orbital reconstruction after maxillectomy. J Plast Reconstr Aesthet Surg, 2020, 73(4): 732-739.
|
12. |
Touré G, Gouet E. Use of a 3-dimensional custom-made porous titanium prosthesis for mandibular body reconstruction with prosthetic dental rehabilitation and lipofilling. J Oral Maxillofac Surg, 2019, 77(6): 1305-1313.
|
13. |
Fanchette J, Faucon B, Cartry F, et al. Reconstruction of the anterior wall of the frontal sinus by a custom-made titanium prosthesis after resection of a giant osteoma of the frontal sinus. Eur Ann Otorhinolaryngol Head Neck Dis, 2019, 136(1): 33-36.
|
14. |
Xia Y, Feng ZC, Li C, et al. Application of additive manufacturing in customized titanium mandibular implants for patients with oral tumors. Oncol Lett, 2020, 20(4): 51. doi: 10.3892/ol.2020.11912.
|
15. |
Boriani S, Gasbarrini A, Bandiera S, et al. En bloc resections in the spine: The experience of 220 patients during 25 years. World Neurosurg, 2017, 98: 217-229.
|
16. |
Yang J, Cai H, Lv J, et al. In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine (Phila Pa 1976), 2014, 39(8): E486-E492.
|
17. |
王秀霞, 姬彦辉, 冷子宽, 等. 新型3D打印个体化人工椎体用于脊椎肿瘤切除重建的研究. 中华实验外科杂志, 2021, 38(6): 1155-1158.
|
18. |
纪经涛, 胡永成, 苗军. 3D打印人工椎体在胸腰椎肿瘤整块切除后重建中的应用. 中华骨科杂志, 2020, 40(4): 208-216.
|
19. |
Yang X, Wan W, Gong H, et al. Application of individualized 3D-printed artificial vertebral body for cervicothoracic reconstruction in a six-level recurrent chordoma. Turk Neurosurg, 2020, 30(1): 149-155.
|
20. |
Xu N, Wei F, Liu X, et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine (Phila Pa 1976), 2016, 41(1): E50-E54.
|
21. |
Kim D, Lim JY, Shim KW, et al. Sacral reconstruction with a 3D-printed implant after hemisacrectomy in a patient with sacral osteosarcoma: 1-year follow-up result. Yonsei Med J, 2017, 58(2): 453-457.
|
22. |
吴家昌, 李修往, 方国芳, 等. 3D打印人工椎体在脊柱肿瘤手术中的设计及初步应用. 中华创伤骨科杂志, 2020, 22(10): 855-861.
|
23. |
Li X, Wang Y, Zhao Y, et al. Multilevel 3D printing implant for reconstructing cervical spine with metastatic papillary thyroid carcinoma. Spine (Phila Pa 1976), 2017, 42(22): E1326-E1330.
|
24. |
Wang Y, Zhang X, Zhang Y, et al. One-stage posterior en-bloc spondylectomy following reconstruction with individualized 3D printed artificial vertebrae for multi-segment thoracolumbar metastases: case report and literature review. Am J Transl Res, 2021, 13(1): 115-123.
|
25. |
Li Y, Zheng G, Liu T, et al. Surgical resection of solitary bone plasmacytoma of atlas and reconstruction with 3-dimensional-printed titanium patient-specific implant. World Neurosurg, 2020, 139: 322-329.
|
26. |
Wei F, Li Z, Liu Z, et al. Upper cervical spine reconstruction using customized 3D-printed vertebral body in 9 patients with primary tumors involving C2. Ann Transl Med, 2020, 8(6): 332. doi: 10.21037/atm.2020.03.32.
|
27. |
Wang J, An J, Lu M, et al. Is three-dimensional-printed custom-made ultra-short stem with a porous structure an acceptable reconstructive alternative in peri-knee metaphysis for the tumorous bone defect? World J Surg Oncol, 2021, 19(1): 235. doi: 10.1186/s12957-021-02355-7.
|
28. |
Zhao D, Tang F, Min L, et al. Intercalary reconstruction of the “ultra-Critical Sized Bone Defect” by 3D-printed porous prosthesis after resection of tibial malignant tumor. Cancer Manag Res, 2020, 12: 2503-2512.
|
29. |
Zhang Y, Lu M, Min L, et al. Three-dimensional-printed porous implant combined with autograft reconstruction for giant cell tumor in proximal tibia. J Orthop Surg Res, 2021, 16(1): 286. doi: 10.1186/s13018-021-02446-x.
|
30. |
Lu M, Wang J, Tang F, et al. A three-dimensional printed porous implant combined with bone grafting following curettage of a subchondral giant cell tumour of the proximal tibia: a case report. BMC Surg, 2019, 19(1): 29. doi: 10.1186/s12893-019-0491-y.
|
31. |
Lu M, Li Y, Luo Y, et al. Uncemented three-dimensional-printed prosthetic reconstruction for massive bone defects of the proximal tibia. World J Surg Oncol, 2018, 16(1): 47. doi: 10.1186/s12957-018-1333-6.
|
32. |
Han Q, Zhang K, Zhang Y, et al. Individual resection and reconstruction of pelvic tumor with three-dimensional printed customized hemi-pelvic prosthesis: A case report. Medicine (Baltimore), 2019, 98(36): e16658. doi: 10.1097/MD.00000-00000016658.
|
33. |
Fan H, Fu J, Li X, et al. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol, 2015, 13: 308. doi: 10.1186/s12957-015-0723-2.
|
34. |
Liu W, Shao Z, Rai S, et al. Three-dimensional-printed intercalary prosthesis for the reconstruction of large bone defect after joint-preserving tumor resection. J Surg Oncol, 2020, 121(3): 570-577.
|
35. |
Chin BZ, Ji T, Tang X, et al. Three-level lumbar en bloc spondylectomy with three-dimensional-printed vertebrae reconstruction for recurrent giant cell tumor. World Neurosurgery, 2019, 129: 531-537.e1.
|
36. |
Wen Z, Lu T, Wang Y, et al. Anterior cervical corpectomy and fusion and anterior cervical discectomy and fusion using titanium mesh cages for treatment of degenerative cervical pathologies: a literature review. Med Sci Monit, 2018, 24: 6398-6404.
|
37. |
Ramazanoğlu AF, Aydın SO, Etli MU, et al. Role of spinal instability neoplastic score in management of spinal plasmacytoma. World Neurosurgery, 2022, 161: e303-e307.
|
38. |
Zhang H, Song J. Knockdown of lncRNA C5orf66 AS1 inhibits osteosarcoma cell proliferation and invasion via miR-149-5p upregulation. Oncology Letters, 2021, 22(5): 757. doi: 10.3892/ol.2021.13018.
|
39. |
Han Y, Li S, Cao X, et al. Different inhibitory effect and mechanism of hydroxyapatite nanoparticles on normal cells and cancer cells in vitro and in vivo. Scientific Reports, 2014, 4(1): 1-8.
|
40. |
Li Z, Tang J, Wu H, et al. A systematic assessment of hydroxyapatite nanoparticles used in the treatment of melanoma. Nano Research, 2020, 13(8): 2106-2117.
|
41. |
Zhang K, Zhou Y, Xiao C, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci Adv, 2019, 5(8): eaax6946. doi: 10.1126/sciadv.aax6946.
|
42. |
Wang R, Liu W, Wang Q, et al. Anti-osteosarcoma effect of hydroxyapatite nanoparticles both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway. Biomater Sci, 2020, 8(16): 4426-4437.
|
43. |
Zan R, Ji W, Qiao S, et al. Biodegradable magnesium implants: a potential scaffold for bone tumor patients. Science China Materials, 2021, 64(4): 1007-1020.
|
44. |
Wei X, Tang Z, Wu H, et al. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway. Mater Today Bio, 2021, 12: 100147. doi: 10.1016/j.mtbio.2021.100147.
|
45. |
Zhang T, Wei Q, Zhou H, et al. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci, 2020, 8(11): 3106-3115.
|
46. |
Zhang T, Wei Q, Fan D, et al. Improved osseointegration with rhBMP-2 intraoperatively loaded in a specifically designed 3D-printed porous Ti6Al4V vertebral implant. Biomater Sci, 2020, 8(5): 1279-1289.
|
47. |
Li Y, Liu Y, Bai H, et al. Sustained release of VEGF to promote angiogenesis and osteointegration of three-dimensional printed biomimetic titanium alloy implants. Front Bioeng Biotechnol, 2021, 9: 757767. doi: 10.3389/fbioe.2021.757767.
|
48. |
Zhang W, Sun C, Zhu J, et al. 3D printed porous titanium cages filled with simvastatin hydrogel promotes bone ingrowth and spinal fusion in rhesus macaques. Biomater Sci, 2020, 8(15): 4147-4156.
|
49. |
Jing Z, Ni R, Wang J, et al. Practical strategy to construct anti-osteosarcoma bone substitutes by loading cisplatin into 3D-printed titanium alloy implants using a thermosensitive hydrogel. Bioact Mater, 2021, 6(12): 4542-4557.
|