- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China;
Citation: PENG Hongjun, ZENG Yi. Research progress on the correlation between sarcopenia and osteoarthritis. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(12): 1549-1557. doi: 10.7507/1002-1892.202209015 Copy
1. | Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1): 16-31. |
2. | Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle, 2022, 13(1): 86-99. |
3. | Tournadre A, Vial G, Capel F, et al. Sarcopenia. Joint Bone Spine, 2019, 86(3): 309-314. |
4. | Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol, 2018, 30(2): 160-167. |
5. | Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc, 2014, 15(2): 95-101. |
6. | Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 2020, 21(3): 300-307. |
7. | Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 2010, 39(4): 412-423. |
8. | Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition:prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc, 2011, 12(4): 249-256. |
9. | Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci, 2014, 69(5): 547-558. |
10. | 中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心 (湘雅医院), 等. 中国骨关节炎诊疗指南 (2021年版). 中华骨科杂志, 2021, 41(18): 1291-1314. |
11. | Hida T, Harada A, Imagama S, et al. Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis, 2014, 5(4): 226-237. |
12. | Zengin A, Kulkarni B, Khadilkar AV, et al. Prevalence of sarcopenia and relationships between muscle and bone in Indian men and women. Calcif Tissue Int, 2021, 109(4): 423-433. |
13. | Purcell SA, MacKenzie M, Barbosa-Silva TG, et al. Sarcopenia prevalence using different definitions in older community-dwelling canadians. J Nutr Health Aging, 2020, 24(7): 783-790. |
14. | Shafiee G, Keshtkar A, Soltani A, et al. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord, 2017, 16: 21. doi: 10.1186/s40200-017-0302-x. |
15. | Therakomen V, Petchlorlian A, Lakananurak N. Prevalence and risk factors of primary sarcopenia in community-dwelling outpatient elderly: a cross-sectional study. Sci Rep, 2020, 10(1): 19551. doi: 10.1038/s41598-020-75250-y. |
16. | Dorhout BG, Overdevest E, Tieland M, et al. Sarcopenia and its relation to protein intake across older ethnic populations in the Netherlands: the HELIUS study. Ethn Health, 2022, 27(3): 705-720. |
17. | Xin C, Sun X, Lu L, et al. Prevalence of sarcopenia in older Chinese adults: a systematic review and meta-analysis. BMJ Open, 2021, 11(8): e041879. doi: 10.1136/bmjopen-2020-041879. |
18. | Wu X, Li X, Xu M, et al. Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study. PLoS One, 2021, 16(3): e0247617. doi: 10.1371/journal.pone.0247617. |
19. | Huang J, He F, Gu X, et al. Estimation of sarcopenia prevalence in individuals at different ages from Zheijang province in China. Aging (Albany NY), 2021, 13(4): 6066-6075. |
20. | 田小丽, 杨蕾, 沈静, 等. 乌鲁木齐市米东区社区中老年肌肉减少症患病率及影响因素. 中华骨质疏松和骨矿盐疾病杂志, 2020, 13(1): 21-26. |
21. | Liu X, Hou L, Zhao W, et al. The comparison of sarcopenia diagnostic criteria using AWGS 2019 with the other five criteria in west China. Gerontology, 2021, 67(4): 386-396. |
22. | Chen Z, Li WY, Ho M, et al. The prevalence of sarcopenia in Chinese older adults: Meta-analysis and meta-regression. Nutrients, 2021, 13(5): 1441. doi: 10.3390/nu13051441. |
23. | Pacifico J, Geerlings MAJ, Reijnierse EM, et al. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp Gerontol, 2020, 131: 110801. doi: 10.1016/j.exger.2019.110801. |
24. | Liu X, Hou L, Xia X, et al. Prevalence of sarcopenia in multi ethnics adults and the association with cognitive impairment: findings from West-China health and aging trend study. BMC Geriatr, 2020, 20(1): 63. doi: 10.1186/s12877-020-1468-5. |
25. | Liu X, Hao Q, Hou L, et al. Ethnic groups differences in the prevalence of sarcopenia using the AWGS criteria. J Nutr Health Aging, 2020, 24(6): 665-671. |
26. | Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage, 2022, 30(2): 184-195. |
27. | Driban JB, Harkey MS, Liu SH, et al. Osteoarthritis and aging: Young adults with osteoarthritis. Current Epidemiology Reports, 2020, 7(1): 9-15. |
28. | Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis, 2020, 79(6): 819-828. |
29. | Li D, Li S, Chen Q, et al. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: A systematic review and meta-analysis. Front Med (Lausanne), 2020, 7: 304. doi: 10.3389/fmed.2020.00304. |
30. | Tang X, Wang S, Zhan S, et al. The prevalence of symptomatic knee osteoarthritis in china: results from the china health and retirement longitudinal study. Arthritis Rheumatol, 2016, 68(3): 648-653. |
31. | Callahan LF, Cleveland RJ, Allen KD, et al. Racial/ethnic, socioeconomic, and geographic disparities in the epidemiology of knee and hip osteoarthritis. Rheum Dis Clin North Am, 2021, 47(1): 1-20. |
32. | Jin WS, Choi EJ, Lee SY, et al. Relationships among obesity, sarcopenia, and osteoarthritis in the elderly. J Obes Metab Syndr, 2017, 26(1): 36-44. |
33. | Kim SR, Choi KH, Jung GU, et al. Associations between fat mass, lean mass, and knee osteoarthritis: The FIFTH Korean National Health and Nutrition Examination Survey (KNHANES V). Calcif Tissue Int, 2016, 99(6): 598-607. |
34. | Kemmler W, Teschler M, Goisser S, et al. Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging, 2015, 10: 1565-1573. |
35. | Dhannakulsakti P, Roopsawang I, Aree-Ue S. Sarcopenia among older adults with knee osteoarthritis: A cross-sectional study of prevalence and its associated factors. Pacific Rim International Journal of Nursing Research, 2022, 26(1): 121-134. |
36. | Martinez-Pena Y Valenzuela I, Akaaboune M. The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice. Mol Metab, 2020, 36: 100979. doi: 10.1016/j.molmet.2020.100979. |
37. | Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest, 2017, 127(1): 43-54. |
38. | Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle, 2019, 10(5): 974-984. |
39. | Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol, 2022, 13: 907750. doi: 10.3389/fimmu.2022.907750. |
40. | Turner MC, Martin NRW, Player DJ, et al. Characterising hyperinsulinemia-induced insulin resistance in human skeletal muscle cells. J Mol Endocrinol, 2020, 64(3): 125-132. |
41. | Nishikawa H, Asai A, Fukunishi S, et al. Metabolic syndrome and sarcopenia. Nutrients, 2021, 13(10). doi: 10.3390/nu13103519. |
42. | Ribeiro M, López de Figueroa P, Blanco FJ, et al. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage, 2016, 24(4): 731-739. |
43. | Qiao L, Li Y, Sun S. Insulin exacerbates inflammation in fibroblast-like synoviocytes. Inflammation, 2020, 43(3): 916-936. |
44. | Zaharia OP, Pesta DH, Bobrov P, et al. Reduced muscle strength is associated with insulin resistance in type 2 diabetes patients with osteoarthritis. J Clin Endocrinol Metab, 2021, 106(4): 1062-1073. |
45. | Hernández-Luis R, Martín-Ponce E, Monereo-Muñoz M, et al. Prognostic value of physical function tests and muscle mass in elderly hospitalized patients. A prospective observational study. Geriatr Gerontol Int, 2018, 18(1): 57-64. |
46. | Veronese N, La Tegola L, Mattera M, et al. Vitamin D intake and magnetic resonance parameters for knee osteoarthritis: Data from the osteoarthritis initiative. Calcif Tissue Int, 2018, 103(5): 522-528. |
47. | Pan L, Xie W, Fu X, et al. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp Gerontol, 2021, 154: 111544. doi: 10.1016/j.exger.2021.111544. |
48. | Baar MP, Perdiguero E, Muñoz-Cánoves P, et al. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol, 2018, 40: 147-155. |
49. | Xu J, She G, Gui T, et al. Knee muscle atrophy is a risk factor for development of knee osteoarthritis in a rat model. J Orthop Translat, 2019, 22: 67-72. |
50. | Tanaka R, Hirohama K, Ozawa J. Can muscle weakness and disability influence the relationship between pain catastrophizing and pain worsening in patients with knee osteoarthritis? A cross-sectional study. Braz J Phys Ther, 2019, 23(3): 266-272. |
51. | Steidle-Kloc E, Rabe K, Eckstein F, et al. Is muscle strength in a painful limb affected by knee pain status of the contralateral limb? -Data from the Osteoarthritis Initiative. Ann Anat, 2019, 221: 68-75. |
52. | Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis. Osteoarthritis Cartilage, 2018, 26(10): 1359-1368. |
53. | Silva JMS, Alabarse PVG, Teixeira VON, et al. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection. PLoS One, 2018, 13(4): e0196682. doi: 10.1371/journal.pone.0196682. |
54. | Cunha JE, Barbosa GM, Castro PATS, et al. Knee osteoarthritis induces atrophy and neuromuscular junction remodeling in the quadriceps and tibialis anterior muscles of rats. Sci Rep, 2019, 9(1): 6366. doi: 10.1038/s41598-019-42546-7. |
55. | Egloff C, Hart DA, Hewitt C, et al. Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model. Osteoarthritis Cartilage, 2016, 24(6): 1054-1060. |
56. | Chang JS, Kim TH, Nguyen TT, et al. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr Gerontol Int, 2017, 17(11): 2266-2273. |
57. | Mao Y, Xu W, Xie Z, et al. Association of irisin and CRP levels with the radiographic severity of knee osteoarthritis. Genet Test Mol Biomarkers, 2016, 20(2): 86-89. |
58. | Li X, Zhu X, Wu H, et al. Roles and mechanisms of irisin in attenuating pathological features of osteoarthritis. Front Cell Dev Biol, 2021, 9: 703670. doi: 10.3389/fcell.2021.703670. |
59. | Vadalà G, Di Giacomo G, Ambrosio L, et al. Irisin recovers osteoarthritic chondrocytes in vitro. Cells, 2020, 9(6): 1478. doi: 10.3390/cells9061478. |
60. | Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health. Ann N Y Acad Sci, 2017, 1402(1): 5-9. |
61. | Zhou K, Qiao X, Cai Y, et al. Lower circulating irisin in middle-aged and older adults with osteoporosis: a systematic review and meta-analysis. Menopause, 2019, 26(11): 1302-1310. |
62. | Liao CD, Liao YH, Liou TH, et al. Effects of protein-rich nutritional composition supplementation on sarcopenia indices and physical activity during resistance exercise training in older women with knee osteoarthritis. Nutrients, 2021, 13(8): 2487. doi: 10.3390/nu13082487. |
63. | Vodička T, Bozděch M, Gimunová M, et al. Could the evaluation of muscle strength imbalances be used as a predictor of total hip arthroplasty? Int J Environ Res Public Health, 2021, 18(10): 5082. doi: 10.3390/ijerph18105082. |
64. | Toda Y, Segal N, Kato A, et al. Correlation between body composition and efficacy of lateral wedged insoles for medial compartment osteoarthritis of the knee. J Rheumatology, 2002, 29(3): 541-545. |
65. | Wang XF, Ma ZH, Teng XR. Isokinetic strength test of muscle strength and motor function in total knee arthroplasty. Orthop Surg, 2020, 12(3): 878-889. |
66. | Cavanellas NT, Cossich VRA, Nicoliche EB, et al. Comparative analysis of quadriceps and hamstrings strength in knee osteoarthritis before and after total knee arthroplasty: a cross-sectional study. Rev Bras Ortop, 2018, 53(2): 158-164. |
67. | Park J, Bae J, Lee J. Complex exercise improves anti-inflammatory and anabolic effects in osteoarthritis-induced sarcopenia in elderly women. Healthcare (Basel), 2021, 9(6): 711. doi: 10.3390/healthcare9060711. |
68. | Ardeljan AD, Polisetty TS, Palmer J, et al. Comparative analysis on the effects of sarcopenia following primary total knee arthroplasty: A retrospective matched-control analysis. J Knee Surg, 2022, 35(2): 128-134. |
69. | Liao CD, Chen HC, Huang SW, et al. Impact of sarcopenia on rehabilitation outcomes after total knee replacement in older adults with knee osteoarthritis. Ther Adv Musculoskelet Dis, 2021, 13: 1759720X21998508. doi: 10.1177/1759720X21998508. |
70. | Babu JM, Kalagara S, Durand W, et al. Sarcopenia as a risk factor for prosthetic infection after total hip or knee arthroplasty. J Arthroplasty, 2019, 34(1): 116-122. |
71. | Mau-Moeller A, Behrens M, Felser S, et al. Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. Biomed Res Int, 2015, 2015: 418168. doi: 10.1155/2015/418168. |
- 1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing, 2019, 48(1): 16-31.
- 2. Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle, 2022, 13(1): 86-99.
- 3. Tournadre A, Vial G, Capel F, et al. Sarcopenia. Joint Bone Spine, 2019, 86(3): 309-314.
- 4. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol, 2018, 30(2): 160-167.
- 5. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc, 2014, 15(2): 95-101.
- 6. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 2020, 21(3): 300-307.
- 7. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 2010, 39(4): 412-423.
- 8. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition:prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc, 2011, 12(4): 249-256.
- 9. Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci, 2014, 69(5): 547-558.
- 10. 中华医学会骨科学分会关节外科学组, 中国医师协会骨科医师分会骨关节炎学组, 国家老年疾病临床医学研究中心 (湘雅医院), 等. 中国骨关节炎诊疗指南 (2021年版). 中华骨科杂志, 2021, 41(18): 1291-1314.
- 11. Hida T, Harada A, Imagama S, et al. Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis, 2014, 5(4): 226-237.
- 12. Zengin A, Kulkarni B, Khadilkar AV, et al. Prevalence of sarcopenia and relationships between muscle and bone in Indian men and women. Calcif Tissue Int, 2021, 109(4): 423-433.
- 13. Purcell SA, MacKenzie M, Barbosa-Silva TG, et al. Sarcopenia prevalence using different definitions in older community-dwelling canadians. J Nutr Health Aging, 2020, 24(7): 783-790.
- 14. Shafiee G, Keshtkar A, Soltani A, et al. Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord, 2017, 16: 21. doi: 10.1186/s40200-017-0302-x.
- 15. Therakomen V, Petchlorlian A, Lakananurak N. Prevalence and risk factors of primary sarcopenia in community-dwelling outpatient elderly: a cross-sectional study. Sci Rep, 2020, 10(1): 19551. doi: 10.1038/s41598-020-75250-y.
- 16. Dorhout BG, Overdevest E, Tieland M, et al. Sarcopenia and its relation to protein intake across older ethnic populations in the Netherlands: the HELIUS study. Ethn Health, 2022, 27(3): 705-720.
- 17. Xin C, Sun X, Lu L, et al. Prevalence of sarcopenia in older Chinese adults: a systematic review and meta-analysis. BMJ Open, 2021, 11(8): e041879. doi: 10.1136/bmjopen-2020-041879.
- 18. Wu X, Li X, Xu M, et al. Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study. PLoS One, 2021, 16(3): e0247617. doi: 10.1371/journal.pone.0247617.
- 19. Huang J, He F, Gu X, et al. Estimation of sarcopenia prevalence in individuals at different ages from Zheijang province in China. Aging (Albany NY), 2021, 13(4): 6066-6075.
- 20. 田小丽, 杨蕾, 沈静, 等. 乌鲁木齐市米东区社区中老年肌肉减少症患病率及影响因素. 中华骨质疏松和骨矿盐疾病杂志, 2020, 13(1): 21-26.
- 21. Liu X, Hou L, Zhao W, et al. The comparison of sarcopenia diagnostic criteria using AWGS 2019 with the other five criteria in west China. Gerontology, 2021, 67(4): 386-396.
- 22. Chen Z, Li WY, Ho M, et al. The prevalence of sarcopenia in Chinese older adults: Meta-analysis and meta-regression. Nutrients, 2021, 13(5): 1441. doi: 10.3390/nu13051441.
- 23. Pacifico J, Geerlings MAJ, Reijnierse EM, et al. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp Gerontol, 2020, 131: 110801. doi: 10.1016/j.exger.2019.110801.
- 24. Liu X, Hou L, Xia X, et al. Prevalence of sarcopenia in multi ethnics adults and the association with cognitive impairment: findings from West-China health and aging trend study. BMC Geriatr, 2020, 20(1): 63. doi: 10.1186/s12877-020-1468-5.
- 25. Liu X, Hao Q, Hou L, et al. Ethnic groups differences in the prevalence of sarcopenia using the AWGS criteria. J Nutr Health Aging, 2020, 24(6): 665-671.
- 26. Allen KD, Thoma LM, Golightly YM. Epidemiology of osteoarthritis. Osteoarthritis Cartilage, 2022, 30(2): 184-195.
- 27. Driban JB, Harkey MS, Liu SH, et al. Osteoarthritis and aging: Young adults with osteoarthritis. Current Epidemiology Reports, 2020, 7(1): 9-15.
- 28. Safiri S, Kolahi AA, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis, 2020, 79(6): 819-828.
- 29. Li D, Li S, Chen Q, et al. The prevalence of symptomatic knee osteoarthritis in relation to age, sex, area, region, and body mass index in China: A systematic review and meta-analysis. Front Med (Lausanne), 2020, 7: 304. doi: 10.3389/fmed.2020.00304.
- 30. Tang X, Wang S, Zhan S, et al. The prevalence of symptomatic knee osteoarthritis in china: results from the china health and retirement longitudinal study. Arthritis Rheumatol, 2016, 68(3): 648-653.
- 31. Callahan LF, Cleveland RJ, Allen KD, et al. Racial/ethnic, socioeconomic, and geographic disparities in the epidemiology of knee and hip osteoarthritis. Rheum Dis Clin North Am, 2021, 47(1): 1-20.
- 32. Jin WS, Choi EJ, Lee SY, et al. Relationships among obesity, sarcopenia, and osteoarthritis in the elderly. J Obes Metab Syndr, 2017, 26(1): 36-44.
- 33. Kim SR, Choi KH, Jung GU, et al. Associations between fat mass, lean mass, and knee osteoarthritis: The FIFTH Korean National Health and Nutrition Examination Survey (KNHANES V). Calcif Tissue Int, 2016, 99(6): 598-607.
- 34. Kemmler W, Teschler M, Goisser S, et al. Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging, 2015, 10: 1565-1573.
- 35. Dhannakulsakti P, Roopsawang I, Aree-Ue S. Sarcopenia among older adults with knee osteoarthritis: A cross-sectional study of prevalence and its associated factors. Pacific Rim International Journal of Nursing Research, 2022, 26(1): 121-134.
- 36. Martinez-Pena Y Valenzuela I, Akaaboune M. The disassembly of the neuromuscular synapse in high-fat diet-induced obese male mice. Mol Metab, 2020, 36: 100979. doi: 10.1016/j.molmet.2020.100979.
- 37. Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest, 2017, 127(1): 43-54.
- 38. Abete I, Konieczna J, Zulet MA, et al. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle, 2019, 10(5): 974-984.
- 39. Nedunchezhiyan U, Varughese I, Sun AR, et al. Obesity, inflammation, and immune system in osteoarthritis. Front Immunol, 2022, 13: 907750. doi: 10.3389/fimmu.2022.907750.
- 40. Turner MC, Martin NRW, Player DJ, et al. Characterising hyperinsulinemia-induced insulin resistance in human skeletal muscle cells. J Mol Endocrinol, 2020, 64(3): 125-132.
- 41. Nishikawa H, Asai A, Fukunishi S, et al. Metabolic syndrome and sarcopenia. Nutrients, 2021, 13(10). doi: 10.3390/nu13103519.
- 42. Ribeiro M, López de Figueroa P, Blanco FJ, et al. Insulin decreases autophagy and leads to cartilage degradation. Osteoarthritis Cartilage, 2016, 24(4): 731-739.
- 43. Qiao L, Li Y, Sun S. Insulin exacerbates inflammation in fibroblast-like synoviocytes. Inflammation, 2020, 43(3): 916-936.
- 44. Zaharia OP, Pesta DH, Bobrov P, et al. Reduced muscle strength is associated with insulin resistance in type 2 diabetes patients with osteoarthritis. J Clin Endocrinol Metab, 2021, 106(4): 1062-1073.
- 45. Hernández-Luis R, Martín-Ponce E, Monereo-Muñoz M, et al. Prognostic value of physical function tests and muscle mass in elderly hospitalized patients. A prospective observational study. Geriatr Gerontol Int, 2018, 18(1): 57-64.
- 46. Veronese N, La Tegola L, Mattera M, et al. Vitamin D intake and magnetic resonance parameters for knee osteoarthritis: Data from the osteoarthritis initiative. Calcif Tissue Int, 2018, 103(5): 522-528.
- 47. Pan L, Xie W, Fu X, et al. Inflammation and sarcopenia: A focus on circulating inflammatory cytokines. Exp Gerontol, 2021, 154: 111544. doi: 10.1016/j.exger.2021.111544.
- 48. Baar MP, Perdiguero E, Muñoz-Cánoves P, et al. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol, 2018, 40: 147-155.
- 49. Xu J, She G, Gui T, et al. Knee muscle atrophy is a risk factor for development of knee osteoarthritis in a rat model. J Orthop Translat, 2019, 22: 67-72.
- 50. Tanaka R, Hirohama K, Ozawa J. Can muscle weakness and disability influence the relationship between pain catastrophizing and pain worsening in patients with knee osteoarthritis? A cross-sectional study. Braz J Phys Ther, 2019, 23(3): 266-272.
- 51. Steidle-Kloc E, Rabe K, Eckstein F, et al. Is muscle strength in a painful limb affected by knee pain status of the contralateral limb? -Data from the Osteoarthritis Initiative. Ann Anat, 2019, 221: 68-75.
- 52. Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis. Osteoarthritis Cartilage, 2018, 26(10): 1359-1368.
- 53. Silva JMS, Alabarse PVG, Teixeira VON, et al. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection. PLoS One, 2018, 13(4): e0196682. doi: 10.1371/journal.pone.0196682.
- 54. Cunha JE, Barbosa GM, Castro PATS, et al. Knee osteoarthritis induces atrophy and neuromuscular junction remodeling in the quadriceps and tibialis anterior muscles of rats. Sci Rep, 2019, 9(1): 6366. doi: 10.1038/s41598-019-42546-7.
- 55. Egloff C, Hart DA, Hewitt C, et al. Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model. Osteoarthritis Cartilage, 2016, 24(6): 1054-1060.
- 56. Chang JS, Kim TH, Nguyen TT, et al. Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr Gerontol Int, 2017, 17(11): 2266-2273.
- 57. Mao Y, Xu W, Xie Z, et al. Association of irisin and CRP levels with the radiographic severity of knee osteoarthritis. Genet Test Mol Biomarkers, 2016, 20(2): 86-89.
- 58. Li X, Zhu X, Wu H, et al. Roles and mechanisms of irisin in attenuating pathological features of osteoarthritis. Front Cell Dev Biol, 2021, 9: 703670. doi: 10.3389/fcell.2021.703670.
- 59. Vadalà G, Di Giacomo G, Ambrosio L, et al. Irisin recovers osteoarthritic chondrocytes in vitro. Cells, 2020, 9(6): 1478. doi: 10.3390/cells9061478.
- 60. Colaianni G, Cinti S, Colucci S, et al. Irisin and musculoskeletal health. Ann N Y Acad Sci, 2017, 1402(1): 5-9.
- 61. Zhou K, Qiao X, Cai Y, et al. Lower circulating irisin in middle-aged and older adults with osteoporosis: a systematic review and meta-analysis. Menopause, 2019, 26(11): 1302-1310.
- 62. Liao CD, Liao YH, Liou TH, et al. Effects of protein-rich nutritional composition supplementation on sarcopenia indices and physical activity during resistance exercise training in older women with knee osteoarthritis. Nutrients, 2021, 13(8): 2487. doi: 10.3390/nu13082487.
- 63. Vodička T, Bozděch M, Gimunová M, et al. Could the evaluation of muscle strength imbalances be used as a predictor of total hip arthroplasty? Int J Environ Res Public Health, 2021, 18(10): 5082. doi: 10.3390/ijerph18105082.
- 64. Toda Y, Segal N, Kato A, et al. Correlation between body composition and efficacy of lateral wedged insoles for medial compartment osteoarthritis of the knee. J Rheumatology, 2002, 29(3): 541-545.
- 65. Wang XF, Ma ZH, Teng XR. Isokinetic strength test of muscle strength and motor function in total knee arthroplasty. Orthop Surg, 2020, 12(3): 878-889.
- 66. Cavanellas NT, Cossich VRA, Nicoliche EB, et al. Comparative analysis of quadriceps and hamstrings strength in knee osteoarthritis before and after total knee arthroplasty: a cross-sectional study. Rev Bras Ortop, 2018, 53(2): 158-164.
- 67. Park J, Bae J, Lee J. Complex exercise improves anti-inflammatory and anabolic effects in osteoarthritis-induced sarcopenia in elderly women. Healthcare (Basel), 2021, 9(6): 711. doi: 10.3390/healthcare9060711.
- 68. Ardeljan AD, Polisetty TS, Palmer J, et al. Comparative analysis on the effects of sarcopenia following primary total knee arthroplasty: A retrospective matched-control analysis. J Knee Surg, 2022, 35(2): 128-134.
- 69. Liao CD, Chen HC, Huang SW, et al. Impact of sarcopenia on rehabilitation outcomes after total knee replacement in older adults with knee osteoarthritis. Ther Adv Musculoskelet Dis, 2021, 13: 1759720X21998508. doi: 10.1177/1759720X21998508.
- 70. Babu JM, Kalagara S, Durand W, et al. Sarcopenia as a risk factor for prosthetic infection after total hip or knee arthroplasty. J Arthroplasty, 2019, 34(1): 116-122.
- 71. Mau-Moeller A, Behrens M, Felser S, et al. Modulation and predictors of periprosthetic bone mineral density following total knee arthroplasty. Biomed Res Int, 2015, 2015: 418168. doi: 10.1155/2015/418168.