- No.1 Department of Scar and Wound Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P. R. China;
Citation: CAO Zilong, LIU Liqiang. Further study of hemodynamics in the distal end of multi-territory perforator flap. Chinese Journal of Reparative and Reconstructive Surgery, 2022, 36(12): 1534-1541. doi: 10.7507/1002-1892.202208113 Copy
1. | Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg, 1987, 40(2): 113-141. |
2. | Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br J Plast Surg, 1989, 42(6): 645-648. |
3. | Low OW, Sebastin SJ, Cheah AEJ. A review of pedicled perforator flaps for reconstruction of the soft tissue defects of the leg and foot. Indian J Plast Surg, 2019, 52(1): 26-36. |
4. | Blondeel PN, Van Landuyt KH, Monstrey SJ, et al. The “Gent” consensus on perforator flap terminology: preliminary definitions. Plast Reconstr Surg, 2003, 112(5): 1378-1383. |
5. | Saint-Cyr M, Wong C, Schaverien M, et al. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg, 2009, 124(5): 1529-1544. |
6. | Wolff KD. Perforator flaps: the next step in the reconstructive ladder? Br J Oral Maxillofac Surg, 2015, 53(9): 787-795. |
7. | 赵海福, 方柏荣. choke血管血流动力学及血管重构的研究进展. 中华整形外科杂志, 2022, 38(1): 109-114. |
8. | 唐茂林, 刘元波. 轴型皮瓣与血管体区及穿支体区的内在联系. 中华整形外科杂志, 2019, 35(9): 847-853. |
9. | Tutor EG, Auba C, Benito A, et al. Easy venous superdrainage in DIEP flap breast reconstruction through the intercostal branch. J Reconstr Microsurg, 2002, 18(7): 595-598. |
10. | Ayestaray B, Yonekura K, Motomura H, et al. A comparative study between deep inferior epigastric artery perforator and thoracoacromial venous supercharged deep inferior epigastric artery perforator flaps. Ann Plast Surg, 2016, 76(1): 78-82. |
11. | Lee KT, Mun GH. Benefits of superdrainage using SIEV in DIEP flap breast reconstruction: A systematic review and meta-analysis. Microsurgery, 2017, 37(1): 75-83. |
12. | Cao Z, Liu L, Fan J, et al. Different transfer forms of the expanded forehead flap pedicled with superficial temporal vessels to treat chin and submental scar deformities. J Craniofac Surg, 2022, 33(4): 1066-1070. |
13. | Gan C, Fan J, Liu L, et al. Reconstruction of large unilateral hemi-facial scar contractures with supercharged expanded forehead flaps based on the anterofrontal superficial temporal vessels. J Plast Reconstr Aesthet Surg, 2013, 66(11): 1470-1476. |
14. | Vinh VQ, Van Anh T, Gia Tiên N, et al. Reconstruction of neck and face scar contractures using occipito-cervico-dorsal supercharged “super-thin flaps”: A retrospective analysis of 82 cases in Vietnam. Burns, 2018, 44(2): 462-467. |
15. | Herlin C, Bekara F, Bertheuil N, et al. Venous supercharging reduces complications and improves outcomes of distally based sural flaps. J Reconstr Microsurg, 2017, 33(5): 343-351. |
16. | McGregor IA, Morgan G. Axial and random pattern flaps. Br J Plast Surg, 1973, 26(3): 202-213. |
17. | Cormack GC, Lamberty BG. Cadaver studies of correlation between vessel size and anatomical territory of cutaneous supply. Br J Plast Surg, 1986, 39(3): 300-306. |
18. | Chubb DP, Taylor GI, Ashton MW. True and ‘choke’ anastomoses between perforator angiosomes: part Ⅱ. dynamic thermographic identification. Plast Reconstr Surg, 2013, 132(6): 1457-1464. |
19. | Cormack GC, Lamberty BG. A classification of fascio-cutaneous flaps according to their patterns of vascularisation. Br J Plast Surg, 1984, 37(1): 80-87. |
20. | Taylor GI, Chubb DP, Ashton MW. True and ‘choke’ anastomoses between perforator angiosomes: part i. anatomical location. Plast Reconstr Surg, 2013, 132(6): 1447-1456. |
21. | Fang F, Liu M, Xiao J, et al. Arterial supercharging is more beneficial to flap survival due to quadruple dilation of venules. J Surg Res, 2020, 247: 490-498. |
22. | Gascoigne AC, Taylor GI, Corlett RJ, et al. Increasing perfusion pressure does not distend perforators or anastomoses but reveals arteriovenous shuntings. Plast Reconstr Surg Glob Open, 2020, 8(6): e2857. doi: 10.1097/GOX.0000000000002857. |
23. | Luo X, Zhao B, Chu T, et al. Improvement of multiterritory perforator flap survival supported by a hybrid perfusion mode: A novel strategy and literature review. J Tissue Viability, 2021, 30(2): 276-281. |
24. | 牙祖蒙, 陈宗基. 跨区反流轴型皮瓣成活机理的实验研究. 中华整形外科杂志, 2002, 18(4): 197-199. |
25. | Taylor GI, Gianoutsos MP, Morris SF. The neurovascular territories of the skin and muscles: anatomic study and clinical implications. Plast Reconstr Surg, 1994, 94(1): 1-36. |
26. | Teo TC. The propeller flap concept. Clin Plast Surg, 2010, 37(4): 615-626. |
27. | Taylor GI, Corlett RJ, Dhar SC, et al. The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps. Plast Reconstr Surg, 2011, 127(4): 1447-1459. |
28. | Nakamura Y, Takanari K, Nakamura R, et al. Correlation between blood flow, tissue volume and microvessel density in the flap. Nagoya J Med Sci, 2020, 82(2): 291-300. |
29. | Dusseldorp JR, Pennington DG. Quantifying blood flow in the DIEP flap: An ultrasonographic study. Plast Reconstr Surg Glob Open, 2014, 2(10): e228. doi: 10.1097/GOX.0000000000000191. |
30. | Tao Y, Hu S, Lui KW, et al. Quantitative regression analysis of the cutaneous vascular territories in a rat model. Surg Radiol Anat, 2011, 33(9): 789-799. |
31. | Tao Y, Ding M, Wang A, et al. Basic perforator flap hemodynamic mathematical model. Plast Reconstr Surg Glob Open, 2016, 4(5): e714. doi: 10.1097/GOX.0000000000000689. |
32. | Nakada T, Kwee IL, Igarashi H, et al. Aquaporin-4 functionality and virchow-robin space water dynamics: Physiological model for neurovascular coupling and glymphatic flow. Int J Mol Sci, 2017, 18(8): 1798. doi: 10.3390/ijms18081798. |
33. | Jennings D, Raghunand N, Gillies RJ. Imaging hemodynamics. Cancer Metastasis Rev, 2008, 27(4): 589-613. |
34. | Fukui A, Tamai S, Williams HB. The importance of venous drainage in rat flaps: an experimental study. J Reconstr Microsurg, 1989, 5(1): 19-30. |
35. | Lee C, Mehran RJ, Lessard ML, et al. Leeches: controlled trial in venous compromised rat epigastric flaps. Br J Plast Surg, 1992, 45(3): 235-238. |
36. | Chiu DT, Hu G, Wu J, et al. Extended rat-ear flap model: a new rodent model for studying the effects of vessel supercharging on flap viability. J Reconstr Microsurg, 2002, 18(6): 503-508. |
37. | Zhang W, Zhu W, Li X, et al. Effects of distal arterial supercharging and distal venous superdrainage on the survival of multiterritory perforator flaps in rats. J Invest Surg, 2022, 35(7): 1462-1471. |
38. | Huang X, Liu D, Gu S, et al. Augmentation of perforator flap blood supply with vascular supercharge or flap prefabrication: Evaluation in a rat model. Plast Reconstr Surg, 2021, 147(5): 1105-1115. |
39. | Wang D, Chen W. Which is the pivotal vessel in vascular dupercharging? An assessment of three forms of vascular supercharging models using indocyanine green fluorescence angiography. J Surg Res, 2020, 251: 16-25. |
40. | Wang X, Pan J, Xiao D, et al. Comparison of arterial supercharging and venous superdrainage on improvement of survival of the extended perforator flap in rats. Microsurgery, 2020, 40(8): 874-880. |
41. | Xu H, Steinberger Z, Wo Y, et al. Supercharging strategies for prefabricated flaps in a rat model. J Reconstr Microsurg, 2019, 35(8): 568-574. |
42. | Fang F, Zhang Z, Wang K, et al. The skin bridge is more important as an additional venous draining route in a perforator-plus flap. J Surg Res, 2019, 234: 40-48. |
43. | Zhang Y, Wang T, Wei J, et al. What’s the remedy for the distal necrosis of DIEP flap, better venous drain or more arterial supply? PLoS One, 2017, 12(2): e0171651. doi: 10.1371/journal.pone.0171651. |
44. | Xu H, Feng S, Xia Y, et al. Prefabricated flaps: Identification of microcirculation structure and supercharging technique improving survival area. J Reconstr Microsurg, 2017, 33(2): 112-117. |
45. | Zheng J, Xi S, Ding M, et al. Effects of venous superdrainage and arterial supercharging on dorsal perforator flap in a rat model. PLoS One, 2016, 11(8): e0160942. doi: 10.1371/journal.pone.0160942. |
46. | Xin MQ, Jie L, Dali M, et al. Hemodynamic effect of different kinds of venous augmentation in a pig transmidline flap model of DIEP flap. J Reconstr Microsurg, 2013, 29(6): 379-386. |
47. | Gümüş N, Erkan M, Erçöçen AR. Vascular pressure monitorization for necessity of vascular augmentation in a rat extended abdominal perforator flap model. Microsurgery, 2012, 32(4): 303-308. |
48. | Fukushima J, Inoue Y, Kiyokawa K, et al. Effects of short-term venous augmentation on the improvement of flap survival: an experimental study in rats. J Plast Reconstr Aesthet Surg, 2012, 65(5): 650-656. |
49. | Yamamoto Y, Sakurai H, Nakazawa H, et al. Effect of vascular augmentation on the haemodynamics and survival area in a rat abdominal perforator flap model. J Plast Reconstr Aesthet Surg, 2009, 62(2): 244-249. |
50. | Chang H, Minn KW, Imanishi N, et al. Effect of venous superdrainage on a four-territory skin flap survival in rats. Plast Reconstr Surg, 2007, 119(7): 2046-2051. |
51. | Groth AK, Campos AC, Gonçalves CG, et al. Effects of venous supercharging in deep inferior epigastric artery perforator flap. Acta Cir Bras, 2007, 22(6): 474-478. |
52. | Hallock GG, Rice DC. Efficacy of venous supercharging of the deep inferior epigastric perforator flap in a rat model. Plast Reconstr Surg, 2005, 116(2): 551-555. |
53. | Chang H, Nobuaki I, Minabe T, et al. Comparison of three different supercharging procedures in a rat skin flap model. Plast Reconstr Surg, 2004, 113(1): 277-283. |
54. | Sano K, Hallock GG, Rice DC. Venous “supercharging” augments survival of the delayed rat TRAM flap. Ann Plast Surg, 2003, 51(4): 398-402. doi: 10.1097/01.SAP.0000068111.83104.7F. |
55. | Ueda K, Harashina T, Oba S, et al. Which vessel is more important in the supercharged flap-artery, vein, or both? An experimental study. J Reconstr Microsurg, 1994, 10(3): 153-155. |
56. | Li Z, Zhang ZW, Yu SX, et al. The experimental study of shunt-decompression arterialized vein flap. Cancer Cell Int, 2018, 18: 148. doi: 10.1186/s12935-018-0622-z. |
57. | Wu H, Zhang C, Chen Z, et al. Distal arterialized venous supercharging improves perfusion and survival in an extended dorsal three-perforasome perforator flap rat model. Plast Reconstr Surg, 2021, 147(6): 957e-966e. |
58. | Agarwal P, Sharma D, Kukrele R. Arteriovenous supercharging: A novel approach to improve reliability of the distally based sural flap. Trop Doct, 2021, 51(3): 339-344. |
59. | 曾秀安, 厉孟, 杨其兵, 等. 二甲基乙二酰基甘氨酸对跨区穿支皮瓣Choke Ⅱ区血管生成的影响机制研究. 中国修复重建外科杂志, 2022, 36(2): 224-230. |
60. | 严玉勇, 潘新元, 林博杰, 等. 天然水蛭素对大鼠缺血皮瓣血管生成作用的 Micro-CT 观察. 中国修复重建外科杂志, 2020, 34(3): 382-386. |
61. | Tu Q, Liu S, Chen T, et al. Effects of adiponectin on random pattern skin flap survival in rats. Int Immunopharmacol, 2019, 76: 105875. doi: 10.1016/j.intimp.2019.105875. |
62. | Khavanin N, Yesantharao P, Kraenzlin F, et al. Quantifying the effect of topical nitroglycerin on random pattern flap perfusion in a rodent model: An application of the ViOptix Intra. Ox for dynamic flap perfusion assessment and salvage. Plast Reconstr Surg, 2021, 148(1): 100-107. |
- 1. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg, 1987, 40(2): 113-141.
- 2. Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br J Plast Surg, 1989, 42(6): 645-648.
- 3. Low OW, Sebastin SJ, Cheah AEJ. A review of pedicled perforator flaps for reconstruction of the soft tissue defects of the leg and foot. Indian J Plast Surg, 2019, 52(1): 26-36.
- 4. Blondeel PN, Van Landuyt KH, Monstrey SJ, et al. The “Gent” consensus on perforator flap terminology: preliminary definitions. Plast Reconstr Surg, 2003, 112(5): 1378-1383.
- 5. Saint-Cyr M, Wong C, Schaverien M, et al. The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg, 2009, 124(5): 1529-1544.
- 6. Wolff KD. Perforator flaps: the next step in the reconstructive ladder? Br J Oral Maxillofac Surg, 2015, 53(9): 787-795.
- 7. 赵海福, 方柏荣. choke血管血流动力学及血管重构的研究进展. 中华整形外科杂志, 2022, 38(1): 109-114.
- 8. 唐茂林, 刘元波. 轴型皮瓣与血管体区及穿支体区的内在联系. 中华整形外科杂志, 2019, 35(9): 847-853.
- 9. Tutor EG, Auba C, Benito A, et al. Easy venous superdrainage in DIEP flap breast reconstruction through the intercostal branch. J Reconstr Microsurg, 2002, 18(7): 595-598.
- 10. Ayestaray B, Yonekura K, Motomura H, et al. A comparative study between deep inferior epigastric artery perforator and thoracoacromial venous supercharged deep inferior epigastric artery perforator flaps. Ann Plast Surg, 2016, 76(1): 78-82.
- 11. Lee KT, Mun GH. Benefits of superdrainage using SIEV in DIEP flap breast reconstruction: A systematic review and meta-analysis. Microsurgery, 2017, 37(1): 75-83.
- 12. Cao Z, Liu L, Fan J, et al. Different transfer forms of the expanded forehead flap pedicled with superficial temporal vessels to treat chin and submental scar deformities. J Craniofac Surg, 2022, 33(4): 1066-1070.
- 13. Gan C, Fan J, Liu L, et al. Reconstruction of large unilateral hemi-facial scar contractures with supercharged expanded forehead flaps based on the anterofrontal superficial temporal vessels. J Plast Reconstr Aesthet Surg, 2013, 66(11): 1470-1476.
- 14. Vinh VQ, Van Anh T, Gia Tiên N, et al. Reconstruction of neck and face scar contractures using occipito-cervico-dorsal supercharged “super-thin flaps”: A retrospective analysis of 82 cases in Vietnam. Burns, 2018, 44(2): 462-467.
- 15. Herlin C, Bekara F, Bertheuil N, et al. Venous supercharging reduces complications and improves outcomes of distally based sural flaps. J Reconstr Microsurg, 2017, 33(5): 343-351.
- 16. McGregor IA, Morgan G. Axial and random pattern flaps. Br J Plast Surg, 1973, 26(3): 202-213.
- 17. Cormack GC, Lamberty BG. Cadaver studies of correlation between vessel size and anatomical territory of cutaneous supply. Br J Plast Surg, 1986, 39(3): 300-306.
- 18. Chubb DP, Taylor GI, Ashton MW. True and ‘choke’ anastomoses between perforator angiosomes: part Ⅱ. dynamic thermographic identification. Plast Reconstr Surg, 2013, 132(6): 1457-1464.
- 19. Cormack GC, Lamberty BG. A classification of fascio-cutaneous flaps according to their patterns of vascularisation. Br J Plast Surg, 1984, 37(1): 80-87.
- 20. Taylor GI, Chubb DP, Ashton MW. True and ‘choke’ anastomoses between perforator angiosomes: part i. anatomical location. Plast Reconstr Surg, 2013, 132(6): 1447-1456.
- 21. Fang F, Liu M, Xiao J, et al. Arterial supercharging is more beneficial to flap survival due to quadruple dilation of venules. J Surg Res, 2020, 247: 490-498.
- 22. Gascoigne AC, Taylor GI, Corlett RJ, et al. Increasing perfusion pressure does not distend perforators or anastomoses but reveals arteriovenous shuntings. Plast Reconstr Surg Glob Open, 2020, 8(6): e2857. doi: 10.1097/GOX.0000000000002857.
- 23. Luo X, Zhao B, Chu T, et al. Improvement of multiterritory perforator flap survival supported by a hybrid perfusion mode: A novel strategy and literature review. J Tissue Viability, 2021, 30(2): 276-281.
- 24. 牙祖蒙, 陈宗基. 跨区反流轴型皮瓣成活机理的实验研究. 中华整形外科杂志, 2002, 18(4): 197-199.
- 25. Taylor GI, Gianoutsos MP, Morris SF. The neurovascular territories of the skin and muscles: anatomic study and clinical implications. Plast Reconstr Surg, 1994, 94(1): 1-36.
- 26. Teo TC. The propeller flap concept. Clin Plast Surg, 2010, 37(4): 615-626.
- 27. Taylor GI, Corlett RJ, Dhar SC, et al. The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps. Plast Reconstr Surg, 2011, 127(4): 1447-1459.
- 28. Nakamura Y, Takanari K, Nakamura R, et al. Correlation between blood flow, tissue volume and microvessel density in the flap. Nagoya J Med Sci, 2020, 82(2): 291-300.
- 29. Dusseldorp JR, Pennington DG. Quantifying blood flow in the DIEP flap: An ultrasonographic study. Plast Reconstr Surg Glob Open, 2014, 2(10): e228. doi: 10.1097/GOX.0000000000000191.
- 30. Tao Y, Hu S, Lui KW, et al. Quantitative regression analysis of the cutaneous vascular territories in a rat model. Surg Radiol Anat, 2011, 33(9): 789-799.
- 31. Tao Y, Ding M, Wang A, et al. Basic perforator flap hemodynamic mathematical model. Plast Reconstr Surg Glob Open, 2016, 4(5): e714. doi: 10.1097/GOX.0000000000000689.
- 32. Nakada T, Kwee IL, Igarashi H, et al. Aquaporin-4 functionality and virchow-robin space water dynamics: Physiological model for neurovascular coupling and glymphatic flow. Int J Mol Sci, 2017, 18(8): 1798. doi: 10.3390/ijms18081798.
- 33. Jennings D, Raghunand N, Gillies RJ. Imaging hemodynamics. Cancer Metastasis Rev, 2008, 27(4): 589-613.
- 34. Fukui A, Tamai S, Williams HB. The importance of venous drainage in rat flaps: an experimental study. J Reconstr Microsurg, 1989, 5(1): 19-30.
- 35. Lee C, Mehran RJ, Lessard ML, et al. Leeches: controlled trial in venous compromised rat epigastric flaps. Br J Plast Surg, 1992, 45(3): 235-238.
- 36. Chiu DT, Hu G, Wu J, et al. Extended rat-ear flap model: a new rodent model for studying the effects of vessel supercharging on flap viability. J Reconstr Microsurg, 2002, 18(6): 503-508.
- 37. Zhang W, Zhu W, Li X, et al. Effects of distal arterial supercharging and distal venous superdrainage on the survival of multiterritory perforator flaps in rats. J Invest Surg, 2022, 35(7): 1462-1471.
- 38. Huang X, Liu D, Gu S, et al. Augmentation of perforator flap blood supply with vascular supercharge or flap prefabrication: Evaluation in a rat model. Plast Reconstr Surg, 2021, 147(5): 1105-1115.
- 39. Wang D, Chen W. Which is the pivotal vessel in vascular dupercharging? An assessment of three forms of vascular supercharging models using indocyanine green fluorescence angiography. J Surg Res, 2020, 251: 16-25.
- 40. Wang X, Pan J, Xiao D, et al. Comparison of arterial supercharging and venous superdrainage on improvement of survival of the extended perforator flap in rats. Microsurgery, 2020, 40(8): 874-880.
- 41. Xu H, Steinberger Z, Wo Y, et al. Supercharging strategies for prefabricated flaps in a rat model. J Reconstr Microsurg, 2019, 35(8): 568-574.
- 42. Fang F, Zhang Z, Wang K, et al. The skin bridge is more important as an additional venous draining route in a perforator-plus flap. J Surg Res, 2019, 234: 40-48.
- 43. Zhang Y, Wang T, Wei J, et al. What’s the remedy for the distal necrosis of DIEP flap, better venous drain or more arterial supply? PLoS One, 2017, 12(2): e0171651. doi: 10.1371/journal.pone.0171651.
- 44. Xu H, Feng S, Xia Y, et al. Prefabricated flaps: Identification of microcirculation structure and supercharging technique improving survival area. J Reconstr Microsurg, 2017, 33(2): 112-117.
- 45. Zheng J, Xi S, Ding M, et al. Effects of venous superdrainage and arterial supercharging on dorsal perforator flap in a rat model. PLoS One, 2016, 11(8): e0160942. doi: 10.1371/journal.pone.0160942.
- 46. Xin MQ, Jie L, Dali M, et al. Hemodynamic effect of different kinds of venous augmentation in a pig transmidline flap model of DIEP flap. J Reconstr Microsurg, 2013, 29(6): 379-386.
- 47. Gümüş N, Erkan M, Erçöçen AR. Vascular pressure monitorization for necessity of vascular augmentation in a rat extended abdominal perforator flap model. Microsurgery, 2012, 32(4): 303-308.
- 48. Fukushima J, Inoue Y, Kiyokawa K, et al. Effects of short-term venous augmentation on the improvement of flap survival: an experimental study in rats. J Plast Reconstr Aesthet Surg, 2012, 65(5): 650-656.
- 49. Yamamoto Y, Sakurai H, Nakazawa H, et al. Effect of vascular augmentation on the haemodynamics and survival area in a rat abdominal perforator flap model. J Plast Reconstr Aesthet Surg, 2009, 62(2): 244-249.
- 50. Chang H, Minn KW, Imanishi N, et al. Effect of venous superdrainage on a four-territory skin flap survival in rats. Plast Reconstr Surg, 2007, 119(7): 2046-2051.
- 51. Groth AK, Campos AC, Gonçalves CG, et al. Effects of venous supercharging in deep inferior epigastric artery perforator flap. Acta Cir Bras, 2007, 22(6): 474-478.
- 52. Hallock GG, Rice DC. Efficacy of venous supercharging of the deep inferior epigastric perforator flap in a rat model. Plast Reconstr Surg, 2005, 116(2): 551-555.
- 53. Chang H, Nobuaki I, Minabe T, et al. Comparison of three different supercharging procedures in a rat skin flap model. Plast Reconstr Surg, 2004, 113(1): 277-283.
- 54. Sano K, Hallock GG, Rice DC. Venous “supercharging” augments survival of the delayed rat TRAM flap. Ann Plast Surg, 2003, 51(4): 398-402. doi: 10.1097/01.SAP.0000068111.83104.7F.
- 55. Ueda K, Harashina T, Oba S, et al. Which vessel is more important in the supercharged flap-artery, vein, or both? An experimental study. J Reconstr Microsurg, 1994, 10(3): 153-155.
- 56. Li Z, Zhang ZW, Yu SX, et al. The experimental study of shunt-decompression arterialized vein flap. Cancer Cell Int, 2018, 18: 148. doi: 10.1186/s12935-018-0622-z.
- 57. Wu H, Zhang C, Chen Z, et al. Distal arterialized venous supercharging improves perfusion and survival in an extended dorsal three-perforasome perforator flap rat model. Plast Reconstr Surg, 2021, 147(6): 957e-966e.
- 58. Agarwal P, Sharma D, Kukrele R. Arteriovenous supercharging: A novel approach to improve reliability of the distally based sural flap. Trop Doct, 2021, 51(3): 339-344.
- 59. 曾秀安, 厉孟, 杨其兵, 等. 二甲基乙二酰基甘氨酸对跨区穿支皮瓣Choke Ⅱ区血管生成的影响机制研究. 中国修复重建外科杂志, 2022, 36(2): 224-230.
- 60. 严玉勇, 潘新元, 林博杰, 等. 天然水蛭素对大鼠缺血皮瓣血管生成作用的 Micro-CT 观察. 中国修复重建外科杂志, 2020, 34(3): 382-386.
- 61. Tu Q, Liu S, Chen T, et al. Effects of adiponectin on random pattern skin flap survival in rats. Int Immunopharmacol, 2019, 76: 105875. doi: 10.1016/j.intimp.2019.105875.
- 62. Khavanin N, Yesantharao P, Kraenzlin F, et al. Quantifying the effect of topical nitroglycerin on random pattern flap perfusion in a rodent model: An application of the ViOptix Intra. Ox for dynamic flap perfusion assessment and salvage. Plast Reconstr Surg, 2021, 148(1): 100-107.