- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China;
Citation: CAI Wufeng, LI Jian, LI Qi. Research progress on bioactive strategies for promoting tendon graft healing after anterior cruciate ligament reconstruction. Chinese Journal of Reparative and Reconstructive Surgery, 2023, 37(10): 1292-1299. doi: 10.7507/1002-1892.202306088 Copy
1. | Mengsteab PY, Nair LS, Laurencin CT. The past, present and future of ligament regenerative engineering. Regen Med, 2016, 11(8): 871-881. |
2. | Diermeier TA, Rothrauff BB, Engebretsen L, et al. Treatment after ACL injury: Panther Symposium ACL Treatment Consensus Group. Br J Sports Med, 2021, 55(1): 14-22. |
3. | Filbay SR, Skou ST, Bullock GS, et al. Long-term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: a systematic review and meta-analysis for the OPTIKNEE consensus. Br J Sports Med, 2022, 56(24): 1465-1474. |
4. | Monk AP, Davies LJ, Hopewell S, et al. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev, 2016, 4(4): CD011166. |
5. | 中华医学会运动医疗分会. 运动医疗分会蓬勃发展赛事医疗保障独树一帜—中华医学会运动医疗分会献礼新中国成立70周年. 中华医学信息导报, 2019, 34(16): 8. |
6. | Andernord D, Karlsson J, Musahl V, et al. Timing of surgery of the anterior cruciate ligament. Arthroscopy, 2013, 29(11): 1863-1871. |
7. | Sheean AJ, Musahl V, Slone HS, et al. Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med, 2018, 52(11): 698-701. |
8. | Renström PA. Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: recent evidence and a personal reflection. Br J Sports Med, 2013, 47(6): 367-372. |
9. | He X, Li Y, Guo J, et al. Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials, 2021, 269: 120625. |
10. | Yao S, Yung PSH, Lui PPY. Tackling the challenges of graft healing after anterior cruciate ligament reconstruction-thinking from the endpoint. Front Bioeng Biotechnol, 2021, 9: 756930. |
11. | Ménétrey J, Duthon VB, Laumonier T, et al. “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc, 2008, 16(3): 224-231. |
12. | Smatov S, Mukasheva F, Erisken C. Collagen fibril diameter distribution of sheep anterior cruciate ligament. Polymers (Basel), 2023, 15(3): 752. |
13. | Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res, 2011, 52(2): 87-98. |
14. | Samukawa M, Tohyama H, Yasuda K. Future challenges of anterior cruciate ligament reconstruction biological modulation using a growth factor application for enhancement of graft healing//Ochi M, Shino K, Yasuda K, et al. ACl injury and its treatment. Tokyo: Springer Japan, 2016: 523-536. |
15. | Crispim JF, Fu SC, Lee YW, et al. Bioactive tape with BMP-2 binding peptides captures endogenous growth factors and accelerates healing after anterior cruciate ligament reconstruction. Am J Sports Med, 2018, 46(12): 2905-2914. |
16. | Deng XH, Lebaschi A, Camp CL, et al. Expression of signaling molecules involved in embryonic development of the insertion site is inadequate for reformation of the native enthesis: evaluation in a novel murine ACL reconstruction model. J Bone Joint Surg (Am), 2018, 100(15): e102. |
17. | Blitz E, Sharir A, Akiyama H, et al. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development, 2013, 140(13): 2680-2690. |
18. | Zhang Q, Ji Q, Wang X, et al. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage, 2015, 23(12): 2259-2268. |
19. | Schwartz AG, Long F, Thomopoulos S. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development, 2015, 142(1): 196-206. |
20. | Adouni M, Gouissem A, Al Khatib F, et al. Biomechanics of the anterior cruciate ligament under simulated molecular degradation. Eur Cell Mater, 2022, 43: 22-38. |
21. | Fang F, Sup M, Luzzi A, et al. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol, 2022, 105: 87-103. |
22. | Bobzin L, Roberts RR, Chen HJ, et al. Development and maintenance of tendons and ligaments. Development, 2021, 148(8): dev186916. |
23. | Muller B, Bowman KF, Bedi A. ACL graft healing and biologics. Clin Sports Med, 2013, 32(1): 93-109. |
24. | Asahara H, Inui M, Lotz MK. Tendons and ligaments: Connecting developmental biology to musculoskeletal disease pathogenesis. J Bone Miner Res, 2017, 32(9): 1773-1782. |
25. | Pauzenberger L, Syré S, Schurz M. “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy, 2013, 29(10): 1712-1721. |
26. | Little D, Thompson JW, Dubois LG, et al. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS One, 2014, 9(5): e96526. |
27. | Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2008, 16(9): 834-842. |
28. | Mascarenhas R, Saltzman BM, Sayegh ET, et al. Bioabsorbable versus metallic interference screws in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy, 2015, 31(3): 561-568. |
29. | Naraoka T, Kimura Y, Tsuda E, et al. Is remnant preservation truly beneficial to anterior cruciate ligament reconstruction healing? Clinical and magnetic resonance imaging evaluations of remnant-preserved reconstruction. Am J Sports Med, 2017, 45(5): 1049-1058. |
30. | Rodeo SA, Arnoczky SP, Torzilli PA, et al. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg (Am), 1993, 75(12): 1795-1803. |
31. | Maerz T, Sherman E, Newton M, et al. Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post-traumatic osteoarthritis. J Orthop Res, 2018, 36(7): 1969-1979. |
32. | Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology, 2023, 21(1): 14. |
33. | Rodríguez-Merchán EC. Anterior cruciate ligament reconstruction: Is biological augmentation beneficial? Int J Mol Sci, 2021, 22(22): 12566. doi: 10.3390/ijms222212566. |
34. | Kim JH, Oh SH, Min HK, et al. Dual growth factor-immobilized a symmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res, 2018, 106(1): 115-125. |
35. | Phillips JE, Burns KL, Le Doux JM, et al. Engineering graded tissue interfaces. Proc Natl Acad Sci U S A, 2008, 105(34): 12170-12175. |
36. | Madhurakkat Perikamana SK, Lee J, Ahmad T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials, 2018, 165: 79-93. |
37. | Wang D, Zhang X, Ng KW, et al. Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration. Acta Biomater, 2022, 154: 108-122. |
38. | Chen C, Shi Q, Li M, et al. Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact Mater, 2022, 16: 451-471. |
39. | Zhu M, Lin Tay M, Lim KS, et al. Novel growth factor combination for improving rotator cuff repair: A rat in vivo study. Am J Sports Med, 2022, 50(4): 1044-1053. |
40. | Chen L, Liu J, Guan M, et al. Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine, 2020, 15: 6097-6111. |
41. | Lyu J, Chen L, Zhang J, et al. A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-to-bone interface healing. Biomater Sci, 2020, 8(13): 3649-3663. |
42. | Fleming BC, Magarian EM, Harrison SL, et al. Collagen scaffold supplementation does not improve the functional properties of the repaired anterior cruciate ligament. J Orthop Res, 2010, 28(6): 703-709. |
43. | Murray MM, Fleming BC. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am J Sports Med, 2013, 41(8): 1762-1770. |
44. | Jang KM, Lim HC, Jung WY, et al. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: New strategy to enhance tendon graft healing. Arthroscopy, 2015, 31(8): 1530-1539. |
45. | Yu H, Cheng J, Shi W, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater, 2020, 106: 328-341. |
46. | Jenkins SM, Guzman A, Gardner BB, et al. Rehabilitation after anterior cruciate ligament injury: Review of current literature and recommendations. Curr Rev Musculoskelet Med, 2022, 15(3): 170-179. |
47. | Lim JK, Hui J, Li L, et al. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy, 2004, 20(9): 899-910. |
48. | Shi Y, Kang X, Wang Y, et al. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit, 2020, 26: e923328. |
49. | Dong Y, Zhang Q, Li Y, et al. Enhancement of tendon-bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci, 2012, 13(10): 13605-13620. |
50. | Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc, 2007, 15(10): 1219-1227. |
51. | Ju YJ, Muneta T, Yoshimura H, et al. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res, 2008, 332(3): 469-478. |
52. | Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum, 2006, 54(3): 843-853. |
53. | Mizuno M, Katano H, Mabuchi Y, et al. Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Res Ther, 2018, 9(1): 123. |
54. | Steinert AF, Kunz M, Prager P, et al. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A, 2011, 17(9-10): 1375-1388. |
55. | Matsumoto T, Ingham SM, Mifune Y, et al. Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev, 2012, 21(6): 859-872. |
56. | Nakano N, Matsumoto T, Takayama K, et al. Age-dependent healing potential of anterior cruciate ligament remnant-derived cells. Am J Sports Med, 2015, 43(3): 700-708. |
57. | Inokuchi T, Matsumoto T, Takayama K, et al. Influence of the injury-to-surgery interval on the healing potential of human anterior cruciate ligament-derived cells. Am J Sports Med, 2017, 45(6): 1359-1369. |
58. | Kawakami Y, Takayama K, Matsumoto T, et al. Anterior cruciate ligament-derived stem cells transduced with BMP2 accelerate graft-bone integration after ACL reconstruction. Am J Sports Med, 2017, 45(3): 584-597. |
59. | Butler DL. Evolution of functional tissue engineering for tendon and ligament repair. J Tissue Eng Regen Med, 2022, 16(12): 1091-1108. |
60. | Bakirci E, Guenat OT, Ahmad SS, et al. Tissue engineering approaches for the repair and regeneration of the anterior cruciate ligament: towards 3D bioprinted ACL-on-chip. Eur Cell Mater, 2022, 44: 21-42. |
61. | Goulet F, Chabaud S, Simon F, et al. Potential of tissue-engineered ligament substitutes for ruptured ACL replacement//Eberli D. Tissue Engineering for Tissue and Organ Regeneration. InTech, 2011: 162-178. |
62. | Robayo LM, Moulin VJ, Tremblay P, et al. New ligament healing model based on tissue-engineered collagen scaffolds. Wound Repair Regen, 2011, 19(1): 38-48. |
63. | Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol, 2018, 107(Pt A): 678-688. |
64. | Qian S, Wang Z, Zheng Z, et al. A collagen and silk scaffold for improved healing of the tendon and bone interface in a rabbit model. Med Sci Monit, 2019, 25: 269-278. |
65. | Fleming BC, Carey JL, Spindler KP, et al. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res, 2008, 26(11): 1500-1505. |
66. | Gantenbein B, Gadhari N, Chan SC, et al. Mesenchymal stem cells and collagen patches for anterior cruciate ligament repair. World J Stem Cells, 2015, 7(2): 521-534. |
67. | Sahoo JK, Hasturk O, Falcucci T, et al. Silk chemistry and biomedical material designs. Nat Rev Chem, 2023, 7(5): 302-318. |
68. | Wang Q, Chen Q, Yang Y, et al. Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules, 2013, 14(1): 285-289. |
69. | Brown JE, Gulka CP, Giordano JEM, et al. Injectable silk protein microparticle-based fillers: A novel material for potential use in glottic insufficiency. J Voice, 2019, 33(5): 773-780. |
70. | Chen J, Venkatesan H, Hu J. Chemically modified silk proteins. Advanced Engineering Materials, 2018, 20(7): 1700961. |
71. | Raynal L, Allardyce BJ, Wang X, et al. Facile and versatile solid state surface modification of silk fibroin membranes using click chemistry. J Mater Chem B, 2018, 6(48): 8037-8042. |
72. | McGill M, Coburn JM, Partlow BP, et al. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater, 2017, 63: 76-84. |
73. | Yu R, Yang Y, He J, et al. Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing. Chemical Engineering Journal, 2021, 417: 128278. |
74. | Mu X, Gonzalez-Obeso C, Xia Z, et al. 3D printing of monolithic proteinaceous cantilevers using regenerated silk fibroin. Molecules, 2022, 27(7): 218. |
75. | Mu X, Wang Y, Guo C, et al. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol Biosci, 2020, 20(1): e1900191. |
76. | Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater, 2021, 6(8): 2491-2510. |
77. | Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B, 2016, 4(45): 7259-7269. |
78. | Kim BS, Kim EJ, Choi JS, et al. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J Biomed Mater Res A, 2014, 102(11): 4044-4054. |
79. | Lausch AJ, Chong LC, Uludag H, et al. Multiphasic collagen scaffolds for engineered tissue interfaces. Advanced Functional Materials, 2018, 28(48): 1804730. |
80. | Chen P, Li L, Dong L, et al. Gradient biomineralized silk fibroin nanofibrous scaffold with osteochondral inductivity for integration of tendon to bone. ACS Biomater Sci Eng, 2021, 7(3): 841-851. |
81. | Cardona-Ramirez S, Cook JL, Stoker AM, et al. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res, 2022, 40(9): 1967-1980. |
82. | Bascuñán AL, Biedrzycki A, Banks SA, et al. Large animal models for anterior cruciate ligament research. Front Vet Sci, 2019, 6: 292. |
83. | Alentorn-Geli E, Seijas R, Martínez-De la Torre A, et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. J Orthop Surg (Hong Kong), 2019, 27(3): 2309499019867580. |
84. | Yang C, Teng Y, Geng B, et al. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol, 2023, 11: 1118468. |
85. | Gong H, Huang B, Zheng Z, et al. Clinical use of platelet-rich plasma to promote tendon-bone healing and graft maturation in anterior cruciate ligament reconstruction-a randomized controlled study. Indian J Orthop, 2022, 56(5): 805-811. |
86. | Mutsuzaki H, Kinugasa T, Ikeda K, et al. Anatomic single-bundle anterior cruciate ligament reconstruction using a calcium phosphate-hybridized tendon graft: a randomized controlled trial with 2 years of follow-up. J Orthop Surg Res, 2018, 13(1): 327. |
87. | Wang CJ, Ko JY, Chou WY, et al. Shockwave therapy improves anterior cruciate ligament reconstruction. J Surg Res, 2014, 188(1): 110-118. |
- 1. Mengsteab PY, Nair LS, Laurencin CT. The past, present and future of ligament regenerative engineering. Regen Med, 2016, 11(8): 871-881.
- 2. Diermeier TA, Rothrauff BB, Engebretsen L, et al. Treatment after ACL injury: Panther Symposium ACL Treatment Consensus Group. Br J Sports Med, 2021, 55(1): 14-22.
- 3. Filbay SR, Skou ST, Bullock GS, et al. Long-term quality of life, work limitation, physical activity, economic cost and disease burden following ACL and meniscal injury: a systematic review and meta-analysis for the OPTIKNEE consensus. Br J Sports Med, 2022, 56(24): 1465-1474.
- 4. Monk AP, Davies LJ, Hopewell S, et al. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database Syst Rev, 2016, 4(4): CD011166.
- 5. 中华医学会运动医疗分会. 运动医疗分会蓬勃发展赛事医疗保障独树一帜—中华医学会运动医疗分会献礼新中国成立70周年. 中华医学信息导报, 2019, 34(16): 8.
- 6. Andernord D, Karlsson J, Musahl V, et al. Timing of surgery of the anterior cruciate ligament. Arthroscopy, 2013, 29(11): 1863-1871.
- 7. Sheean AJ, Musahl V, Slone HS, et al. Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often. Br J Sports Med, 2018, 52(11): 698-701.
- 8. Renström PA. Eight clinical conundrums relating to anterior cruciate ligament (ACL) injury in sport: recent evidence and a personal reflection. Br J Sports Med, 2013, 47(6): 367-372.
- 9. He X, Li Y, Guo J, et al. Biomaterials developed for facilitating healing outcome after anterior cruciate ligament reconstruction: Efficacy, surgical protocols, and assessments using preclinical animal models. Biomaterials, 2021, 269: 120625.
- 10. Yao S, Yung PSH, Lui PPY. Tackling the challenges of graft healing after anterior cruciate ligament reconstruction-thinking from the endpoint. Front Bioeng Biotechnol, 2021, 9: 756930.
- 11. Ménétrey J, Duthon VB, Laumonier T, et al. “Biological failure” of the anterior cruciate ligament graft. Knee Surg Sports Traumatol Arthrosc, 2008, 16(3): 224-231.
- 12. Smatov S, Mukasheva F, Erisken C. Collagen fibril diameter distribution of sheep anterior cruciate ligament. Polymers (Basel), 2023, 15(3): 752.
- 13. Kim HM, Galatz LM, Das R, et al. The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res, 2011, 52(2): 87-98.
- 14. Samukawa M, Tohyama H, Yasuda K. Future challenges of anterior cruciate ligament reconstruction biological modulation using a growth factor application for enhancement of graft healing//Ochi M, Shino K, Yasuda K, et al. ACl injury and its treatment. Tokyo: Springer Japan, 2016: 523-536.
- 15. Crispim JF, Fu SC, Lee YW, et al. Bioactive tape with BMP-2 binding peptides captures endogenous growth factors and accelerates healing after anterior cruciate ligament reconstruction. Am J Sports Med, 2018, 46(12): 2905-2914.
- 16. Deng XH, Lebaschi A, Camp CL, et al. Expression of signaling molecules involved in embryonic development of the insertion site is inadequate for reformation of the native enthesis: evaluation in a novel murine ACL reconstruction model. J Bone Joint Surg (Am), 2018, 100(15): e102.
- 17. Blitz E, Sharir A, Akiyama H, et al. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development, 2013, 140(13): 2680-2690.
- 18. Zhang Q, Ji Q, Wang X, et al. SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage, 2015, 23(12): 2259-2268.
- 19. Schwartz AG, Long F, Thomopoulos S. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development, 2015, 142(1): 196-206.
- 20. Adouni M, Gouissem A, Al Khatib F, et al. Biomechanics of the anterior cruciate ligament under simulated molecular degradation. Eur Cell Mater, 2022, 43: 22-38.
- 21. Fang F, Sup M, Luzzi A, et al. Hedgehog signaling underlying tendon and enthesis development and pathology. Matrix Biol, 2022, 105: 87-103.
- 22. Bobzin L, Roberts RR, Chen HJ, et al. Development and maintenance of tendons and ligaments. Development, 2021, 148(8): dev186916.
- 23. Muller B, Bowman KF, Bedi A. ACL graft healing and biologics. Clin Sports Med, 2013, 32(1): 93-109.
- 24. Asahara H, Inui M, Lotz MK. Tendons and ligaments: Connecting developmental biology to musculoskeletal disease pathogenesis. J Bone Miner Res, 2017, 32(9): 1773-1782.
- 25. Pauzenberger L, Syré S, Schurz M. “Ligamentization” in hamstring tendon grafts after anterior cruciate ligament reconstruction: a systematic review of the literature and a glimpse into the future. Arthroscopy, 2013, 29(10): 1712-1721.
- 26. Little D, Thompson JW, Dubois LG, et al. Proteomic differences between male and female anterior cruciate ligament and patellar tendon. PLoS One, 2014, 9(5): e96526.
- 27. Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc, 2008, 16(9): 834-842.
- 28. Mascarenhas R, Saltzman BM, Sayegh ET, et al. Bioabsorbable versus metallic interference screws in anterior cruciate ligament reconstruction: a systematic review of overlapping meta-analyses. Arthroscopy, 2015, 31(3): 561-568.
- 29. Naraoka T, Kimura Y, Tsuda E, et al. Is remnant preservation truly beneficial to anterior cruciate ligament reconstruction healing? Clinical and magnetic resonance imaging evaluations of remnant-preserved reconstruction. Am J Sports Med, 2017, 45(5): 1049-1058.
- 30. Rodeo SA, Arnoczky SP, Torzilli PA, et al. Tendon-healing in a bone tunnel. A biomechanical and histological study in the dog. J Bone Joint Surg (Am), 1993, 75(12): 1795-1803.
- 31. Maerz T, Sherman E, Newton M, et al. Metabolomic serum profiling after ACL injury in rats: A pilot study implicating inflammation and immune dysregulation in post-traumatic osteoarthritis. J Orthop Res, 2018, 36(7): 1969-1979.
- 32. Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnology, 2023, 21(1): 14.
- 33. Rodríguez-Merchán EC. Anterior cruciate ligament reconstruction: Is biological augmentation beneficial? Int J Mol Sci, 2021, 22(22): 12566. doi: 10.3390/ijms222212566.
- 34. Kim JH, Oh SH, Min HK, et al. Dual growth factor-immobilized a symmetrically porous membrane for bone-to-tendon interface regeneration on rat patellar tendon avulsion model. J Biomed Mater Res, 2018, 106(1): 115-125.
- 35. Phillips JE, Burns KL, Le Doux JM, et al. Engineering graded tissue interfaces. Proc Natl Acad Sci U S A, 2008, 105(34): 12170-12175.
- 36. Madhurakkat Perikamana SK, Lee J, Ahmad T, et al. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials, 2018, 165: 79-93.
- 37. Wang D, Zhang X, Ng KW, et al. Growth and differentiation factor-7 immobilized, mechanically strong quadrol-hexamethylene diisocyanate-methacrylic anhydride polyurethane polymer for tendon repair and regeneration. Acta Biomater, 2022, 154: 108-122.
- 38. Chen C, Shi Q, Li M, et al. Engineering an enthesis-like graft for rotator cuff repair: An approach to fabricate highly biomimetic scaffold capable of zone-specifically releasing stem cell differentiation inducers. Bioact Mater, 2022, 16: 451-471.
- 39. Zhu M, Lin Tay M, Lim KS, et al. Novel growth factor combination for improving rotator cuff repair: A rat in vivo study. Am J Sports Med, 2022, 50(4): 1044-1053.
- 40. Chen L, Liu J, Guan M, et al. Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine, 2020, 15: 6097-6111.
- 41. Lyu J, Chen L, Zhang J, et al. A microfluidics-derived growth factor gradient in a scaffold regulates stem cell activities for tendon-to-bone interface healing. Biomater Sci, 2020, 8(13): 3649-3663.
- 42. Fleming BC, Magarian EM, Harrison SL, et al. Collagen scaffold supplementation does not improve the functional properties of the repaired anterior cruciate ligament. J Orthop Res, 2010, 28(6): 703-709.
- 43. Murray MM, Fleming BC. Use of a bioactive scaffold to stimulate anterior cruciate ligament healing also minimizes posttraumatic osteoarthritis after surgery. Am J Sports Med, 2013, 41(8): 1762-1770.
- 44. Jang KM, Lim HC, Jung WY, et al. Efficacy and safety of human umbilical cord blood-derived mesenchymal stem cells in anterior cruciate ligament reconstruction of a rabbit model: New strategy to enhance tendon graft healing. Arthroscopy, 2015, 31(8): 1530-1539.
- 45. Yu H, Cheng J, Shi W, et al. Bone marrow mesenchymal stem cell-derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater, 2020, 106: 328-341.
- 46. Jenkins SM, Guzman A, Gardner BB, et al. Rehabilitation after anterior cruciate ligament injury: Review of current literature and recommendations. Curr Rev Musculoskelet Med, 2022, 15(3): 170-179.
- 47. Lim JK, Hui J, Li L, et al. Enhancement of tendon graft osteointegration using mesenchymal stem cells in a rabbit model of anterior cruciate ligament reconstruction. Arthroscopy, 2004, 20(9): 899-910.
- 48. Shi Y, Kang X, Wang Y, et al. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit, 2020, 26: e923328.
- 49. Dong Y, Zhang Q, Li Y, et al. Enhancement of tendon-bone healing for anterior cruciate ligament (ACL) reconstruction using bone marrow-derived mesenchymal stem cells infected with BMP-2. Int J Mol Sci, 2012, 13(10): 13605-13620.
- 50. Li F, Jia H, Yu C. ACL reconstruction in a rabbit model using irradiated Achilles allograft seeded with mesenchymal stem cells or PDGF-B gene-transfected mesenchymal stem cells. Knee Surg Sports Traumatol Arthrosc, 2007, 15(10): 1219-1227.
- 51. Ju YJ, Muneta T, Yoshimura H, et al. Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing. Cell Tissue Res, 2008, 332(3): 469-478.
- 52. Mochizuki T, Muneta T, Sakaguchi Y, et al. Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis Rheum, 2006, 54(3): 843-853.
- 53. Mizuno M, Katano H, Mabuchi Y, et al. Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions. Stem Cell Res Ther, 2018, 9(1): 123.
- 54. Steinert AF, Kunz M, Prager P, et al. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A, 2011, 17(9-10): 1375-1388.
- 55. Matsumoto T, Ingham SM, Mifune Y, et al. Isolation and characterization of human anterior cruciate ligament-derived vascular stem cells. Stem Cells Dev, 2012, 21(6): 859-872.
- 56. Nakano N, Matsumoto T, Takayama K, et al. Age-dependent healing potential of anterior cruciate ligament remnant-derived cells. Am J Sports Med, 2015, 43(3): 700-708.
- 57. Inokuchi T, Matsumoto T, Takayama K, et al. Influence of the injury-to-surgery interval on the healing potential of human anterior cruciate ligament-derived cells. Am J Sports Med, 2017, 45(6): 1359-1369.
- 58. Kawakami Y, Takayama K, Matsumoto T, et al. Anterior cruciate ligament-derived stem cells transduced with BMP2 accelerate graft-bone integration after ACL reconstruction. Am J Sports Med, 2017, 45(3): 584-597.
- 59. Butler DL. Evolution of functional tissue engineering for tendon and ligament repair. J Tissue Eng Regen Med, 2022, 16(12): 1091-1108.
- 60. Bakirci E, Guenat OT, Ahmad SS, et al. Tissue engineering approaches for the repair and regeneration of the anterior cruciate ligament: towards 3D bioprinted ACL-on-chip. Eur Cell Mater, 2022, 44: 21-42.
- 61. Goulet F, Chabaud S, Simon F, et al. Potential of tissue-engineered ligament substitutes for ruptured ACL replacement//Eberli D. Tissue Engineering for Tissue and Organ Regeneration. InTech, 2011: 162-178.
- 62. Robayo LM, Moulin VJ, Tremblay P, et al. New ligament healing model based on tissue-engineered collagen scaffolds. Wound Repair Regen, 2011, 19(1): 38-48.
- 63. Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol, 2018, 107(Pt A): 678-688.
- 64. Qian S, Wang Z, Zheng Z, et al. A collagen and silk scaffold for improved healing of the tendon and bone interface in a rabbit model. Med Sci Monit, 2019, 25: 269-278.
- 65. Fleming BC, Carey JL, Spindler KP, et al. Can suture repair of ACL transection restore normal anteroposterior laxity of the knee? An ex vivo study. J Orthop Res, 2008, 26(11): 1500-1505.
- 66. Gantenbein B, Gadhari N, Chan SC, et al. Mesenchymal stem cells and collagen patches for anterior cruciate ligament repair. World J Stem Cells, 2015, 7(2): 521-534.
- 67. Sahoo JK, Hasturk O, Falcucci T, et al. Silk chemistry and biomedical material designs. Nat Rev Chem, 2023, 7(5): 302-318.
- 68. Wang Q, Chen Q, Yang Y, et al. Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules, 2013, 14(1): 285-289.
- 69. Brown JE, Gulka CP, Giordano JEM, et al. Injectable silk protein microparticle-based fillers: A novel material for potential use in glottic insufficiency. J Voice, 2019, 33(5): 773-780.
- 70. Chen J, Venkatesan H, Hu J. Chemically modified silk proteins. Advanced Engineering Materials, 2018, 20(7): 1700961.
- 71. Raynal L, Allardyce BJ, Wang X, et al. Facile and versatile solid state surface modification of silk fibroin membranes using click chemistry. J Mater Chem B, 2018, 6(48): 8037-8042.
- 72. McGill M, Coburn JM, Partlow BP, et al. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater, 2017, 63: 76-84.
- 73. Yu R, Yang Y, He J, et al. Novel supramolecular self-healing silk fibroin-based hydrogel via host-guest interaction as wound dressing to enhance wound healing. Chemical Engineering Journal, 2021, 417: 128278.
- 74. Mu X, Gonzalez-Obeso C, Xia Z, et al. 3D printing of monolithic proteinaceous cantilevers using regenerated silk fibroin. Molecules, 2022, 27(7): 218.
- 75. Mu X, Wang Y, Guo C, et al. 3D printing of silk protein structures by aqueous solvent-directed molecular assembly. Macromol Biosci, 2020, 20(1): e1900191.
- 76. Lei T, Zhang T, Ju W, et al. Biomimetic strategies for tendon/ligament-to-bone interface regeneration. Bioact Mater, 2021, 6(8): 2491-2510.
- 77. Sun Y, Han F, Zhang P, et al. A synthetic bridging patch of modified co-electrospun dual nano-scaffolds for massive rotator cuff tear. J Mater Chem B, 2016, 4(45): 7259-7269.
- 78. Kim BS, Kim EJ, Choi JS, et al. Human collagen-based multilayer scaffolds for tendon-to-bone interface tissue engineering. J Biomed Mater Res A, 2014, 102(11): 4044-4054.
- 79. Lausch AJ, Chong LC, Uludag H, et al. Multiphasic collagen scaffolds for engineered tissue interfaces. Advanced Functional Materials, 2018, 28(48): 1804730.
- 80. Chen P, Li L, Dong L, et al. Gradient biomineralized silk fibroin nanofibrous scaffold with osteochondral inductivity for integration of tendon to bone. ACS Biomater Sci Eng, 2021, 7(3): 841-851.
- 81. Cardona-Ramirez S, Cook JL, Stoker AM, et al. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res, 2022, 40(9): 1967-1980.
- 82. Bascuñán AL, Biedrzycki A, Banks SA, et al. Large animal models for anterior cruciate ligament research. Front Vet Sci, 2019, 6: 292.
- 83. Alentorn-Geli E, Seijas R, Martínez-De la Torre A, et al. Effects of autologous adipose-derived regenerative stem cells administered at the time of anterior cruciate ligament reconstruction on knee function and graft healing. J Orthop Surg (Hong Kong), 2019, 27(3): 2309499019867580.
- 84. Yang C, Teng Y, Geng B, et al. Strategies for promoting tendon-bone healing: Current status and prospects. Front Bioeng Biotechnol, 2023, 11: 1118468.
- 85. Gong H, Huang B, Zheng Z, et al. Clinical use of platelet-rich plasma to promote tendon-bone healing and graft maturation in anterior cruciate ligament reconstruction-a randomized controlled study. Indian J Orthop, 2022, 56(5): 805-811.
- 86. Mutsuzaki H, Kinugasa T, Ikeda K, et al. Anatomic single-bundle anterior cruciate ligament reconstruction using a calcium phosphate-hybridized tendon graft: a randomized controlled trial with 2 years of follow-up. J Orthop Surg Res, 2018, 13(1): 327.
- 87. Wang CJ, Ko JY, Chou WY, et al. Shockwave therapy improves anterior cruciate ligament reconstruction. J Surg Res, 2014, 188(1): 110-118.