1. |
中华医学会骨质疏松和骨矿盐疾病分会. 原发性骨质疏松症诊疗指南(2022). 中国全科医学, 2023, 26(14): 1671-1691.
|
2. |
Walker MD, Shane E. Postmenopausal osteoporosis. N Engl J Med, 2023, 389(21): 1979-1991.
|
3. |
邓淼月, 郭懿, 沈思雨, 等. 定量CT应用于绝经后女性骨质疏松症的研究进展. 临床医学进展, 2024, 14(1): 597-605.
|
4. |
Wang L, Yu W, Yin X, et al. Prevalence of osteoporosis and fracture in China: The China osteoporosis prevalence study. JAMA Netw Open, 2021, 4(8): e2121106. doi: 10.1001/jamanetworkopen.2021.21106.
|
5. |
Lo JC, Yang W, Park-Sigal JJ, et al. Osteoporosis and fracture risk among older US Asian adults. Curr Osteoporos Rep, 2023, 21(5): 592-608.
|
6. |
Yu B, Wang CY. Osteoporosis and periodontal diseases—An update on their association and mechanistic links. Periodontol 2000, 2022, 89(1): 99-113.
|
7. |
Muñoz M, Robinson K, Shibli-Rahhal A. Bone health and osteoporosis prevention and treatment. Clin Obstet Gynecol, 2020, 63(4): 770-787.
|
8. |
Zhang H, Hu Y, Chen X, et al. Expert consensus on the bone repair strategy for osteoporotic fractures in China. Front Endocrinol (Lausanne), 2022, 13: 989648. doi: 10.3389/fendo.2022.989648.
|
9. |
Zhang YY, Xie N, Sun XD, et al. Insights and implications of sexual dimorphism in osteoporosis. Bone Res, 2024, 12(1): 8. doi: 10.1038/s41413-023-00306-4.
|
10. |
Chen YS, Lian WS, Kuo CW, et al. Epigenetic regulation of skeletal tissue integrity and osteoporosis development. Int J Mol Sci, 2020, 21(14): 4923. doi: 10.3390/ijms21144923.
|
11. |
Sivakumar PM, Yetisgin AA, Sahin SB, et al. Bone tissue engineering: Anionic polysaccharides as promising scaffolds. Carbohydr Polym, 2022, 283: 119142. doi: 10.1016/j.carbpol.2022.119142.
|
12. |
Peng Z, Zhao T, Zhou Y, et al. Bone tissue engineering via carbon-based nanomaterials. Adv Healthc Mater, 2020, 9(5): e1901495. doi: 10.1002/adhm.201901495.
|
13. |
Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv Sci (Weinh), 2023, 10(2): e2204502. doi: 10.1002/advs.202204502.
|
14. |
Tan B, Tang Q, Zhong Y, et al. Biomaterial-based strategies for maxillofacial tumour therapy and bone defect regeneration. Int J Oral Sci, 2021, 13(1): 9. doi: 10.1038/s41368-021-00113-9.
|
15. |
Fan L, Chen S, Yang M, et al. Metallic materials for bone repair. Adv Healthc Mater, 2024, 13(3): e2302132. doi: 10.1002/adhm.202302132.
|
16. |
Khare D, Basu B, Dubey AK. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020, 258: 120280. doi: 10.1016/j.biomaterials.2020.120280.
|
17. |
Ren Y, Fan L, Alkildani S, et al. Barrier Membranes for Guided Bone Regeneration (GBR): A focus on recent advances in collagen membranes. Int J Mol Sci, 2022, 23(23): 14987. doi: 10.3390/ijms232314987.
|
18. |
Sadowska JM, Ginebra MP. Inflammation and biomaterials: role of the immune response in bone regeneration by inorganic scaffolds. J Mater Chem B, 2020, 8(41): 9404-9427.
|
19. |
Donos N, Akcali A, Padhye N, et al. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000, 2023, 93(1): 26-55.
|
20. |
Patel D, Wairkar S. Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res, 2023, 13(2): 419-432.
|
21. |
Zhao X, Ma H, Han H, et al. Precision medicine strategies for spinal degenerative diseases: Injectable biomaterials with in situ repair and regeneration. Mater Today Bio, 2022, 16: 100336. doi: 10.1016/j.mtbio.2022.100336.
|
22. |
Liu X, Ma Y, Chen M, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B, 2021, 9(33): 6691-6702.
|
23. |
Mofakhami S, Salahinejad E. Biphasic calcium phosphate microspheres in biomedical applications. J Control Release, 2021, 338: 527-536.
|
24. |
Mo X, Zhang D, Liu K, et al. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering. Int J Mol Sci, 2023, 24(2): 1291. doi: 10.3390/ijms24021291.
|
25. |
Wang X, Huang S, Peng Q. Metal ion-doped hydroxyapatite-based materials for bone defect restoration. Bioengineering (Basel), 2023, 10(12): 1367. doi: 10.3390/bioengineering10121367.
|
26. |
Zhao R, Chen S, Zhao W, et al. A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics, 2020, 10(4): 1572-1589.
|
27. |
Li J, Xia T, Zhao Q, et al. Biphasic calcium phosphate recruits Tregs to promote bone regeneration. Acta Biomater, 2024, 176: 432-444.
|
28. |
Rana N, Suliman S, Mohamed-Ahmed S, et al. Systemic and local innate immune responses to surgical co-transplantation of mesenchymal stromal cells and biphasic calcium phosphate for bone regeneration. Acta Biomater, 2022, 141: 440-453.
|
29. |
彭双麟, 姚志浩, 罗道文, 等. 多孔双相磷酸钙陶瓷修复骨质疏松症大鼠颅骨极量缺损的实验研究. 口腔医学研究, 2019, 35(4): 377-381.
|
30. |
Zheng S, Li D, Liu Q, et al. Surface-modified nano-hydroxyapatite uniformly dispersed on high-porous gelma scaffold surfaces for enhanced osteochondral regeneration. Int J Nanomedicine, 2023, 18: 5907-5923.
|
31. |
Jeuken RM, Roth AK, Peters MJM, et al. In vitro and in vivo study on the osseointegration of BCP-coated versus uncoated nondegradable thermoplastic polyurethane focal knee resurfacing implants. J Biomed Mater Res B Appl Biomater, 2020, 108(8): 3370-3382.
|
32. |
Xue X, Hu Y, Wang S, et al. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater, 2021, 12: 327-339.
|
33. |
Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res, 2023, 27(1): 86. doi: 10.1186/s40824-023-00422-6.
|
34. |
Gao Y, Zhang X, Zhou H. Biomimetic hydrogel applications and challenges in bone, cartilage, and nerve repair. Pharmaceutics, 2023, 15(10): 2405. doi: 10.3390/pharmaceutics15102405.
|
35. |
Zhang H, Wu S, Chen W, et al. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater, 2022, 23: 156-169.
|
36. |
韩晶媛, 李欣玲, 韩金煜, 等. 载药温敏水凝胶调节巨噬细胞M2极化促进骨质疏松骨缺损修复. 牙体牙髓牙周病学杂志, 2024, 29(2): 74-79.
|
37. |
Li J, Li L, Wu T, et al. An injectable thermosensitive hydrogel containing resveratrol and dexamethasone-loaded carbonated hydroxyapatite microspheres for the regeneration of osteoporotic bone defects. Small Methods, 2024, 8(1): e2300843. doi: 10.1002/smtd.202300843.
|
38. |
Nie L, Wu Q, Long H, et al. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. J Biomater Sci Polym Ed, 2019, 30(17): 1636-1657.
|
39. |
Sen KS, Duarte Campos DF, Köpf M, et al. The effect of addition of calcium phosphate particles to hydrogel-based composite materials on stiffness and differentiation of mesenchymal stromal cells toward osteogenesis. Adv Healthc Mater, 2018, 7(18): e1800343. doi: 10.1002/adhm.201800343.
|
40. |
Wu N, Li J, Li X, et al. 3D printed biopolymer/black phosphorus nanoscaffolds for bone implants: A review. Int J Biol Macromol, 2024, 279(Pt 3): 135227. doi: 10.1016/j.ijbiomac.2024.135227.
|
41. |
Ren Y, Zhang C, Liu Y, et al. Advances in 3D printing of highly bioadaptive bone tissue engineering scaffolds. ACS Biomater Sci Eng, 2024, 10(1): 255-270.
|
42. |
Yan C, Zhang P, Qin Q, et al. 3D-printed bone regeneration scaffolds modulate bone metabolic homeostasis through vascularization for osteoporotic bone defects. Biomaterials, 2024, 311: 122699. doi: 10.1016/j.biomaterials.2024.122699.
|
43. |
Li Z, Zhao Y, Wang Z, et al. Engineering multifunctional hydrogel-integrated 3D printed bioactive prosthetic interfaces for osteoporotic osseointegration. Adv Healthc Mater, 2022, 11(11): e2102535. doi: 10.1002/adhm.202102535.
|
44. |
Xie Y, Li S, Zhang T, et al. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci, 2020, 12(1): 37. doi: 10.1038/s41368-020-00107-z.
|
45. |
Qian H, Yao Q, Pi L, et al. Current advances and applications of tantalum element in infected bone defects. ACS Biomater Sci Eng, 2023, 9(1): 1-19.
|
46. |
Wu Y, Liu J, Kang L, et al. An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives. Heliyon, 2023, 9(7): e17718. doi: 10.1016/j.heliyon.2023.e17718.
|
47. |
Wang X, Li Z, Wang Z, et al. Incorporation of bone morphogenetic protein-2 and osteoprotegerin in 3D-printed Ti6Al4V scaffolds enhances osseointegration under osteoporotic conditions. Front Bioeng Biotechnol, 2021, 9: 754205. doi: 10.3389/fbioe.2021.754205.
|
48. |
Zhao Z, Li G, Ruan H, et al. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano, 2021, 15(8): 13041-13054.
|
49. |
Ma L, Wang X, Zhao N, et al. Integrating 3D printing and biomimetic mineralization for personalized enhanced osteogenesis, angiogenesis, and osteointegration. ACS Appl Mater Interfaces, 2018, 10(49): 42146-42154.
|
50. |
Meng M, Wang J, Huang H, et al. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat, 2023, 42: 94-112.
|
51. |
蔡兴博, 董艳, 王斌, 等. 金属基3D打印支架的构建与功能化研究进展. 生物骨科材料与临床研究, 2022, 19(6): 82-87.
|
52. |
Ye B, Wu B, Su Y, et al. Recent advances in the application of natural and synthetic polymer-based scaffolds in musculoskeletal regeneration. Polymers (Basel), 2022, 14(21): 4566. doi: 10.3390/polym14214566.
|
53. |
Rajan RK, Chandran S, Sreelatha HV, et al. Pamidronate-encapsulated electrospun polycaprolactone-based composite scaffolds for osteoporotic bone defect repair. ACS Appl Bio Mater, 2020, 3(4): 1924-1933.
|
54. |
Yu S, Sun T, Liu W, et al. PLGA cage-like structures loaded with Sr/Mg-doped hydroxyapatite for repairing osteoporotic bone defects. Macromol Biosci, 2022, 22(8): e2200092. doi: 10.1002/mabi.202200092.
|
55. |
Liao C, Li Y, Tjong SC. Polyetheretherketone and its composites for bone replacement and regeneration. Polymers (Basel), 2020, 12(12): 2858. doi: 10.3390/polym12122858.
|
56. |
Zhang Y, Wang L, Long X, et al. Multi-functional PEEK implants enhance osseointegration in OVX rat by remodeling the bone immune microenvironment. Colloids Surf B Biointerfaces, 2025, 245: 114219. doi: 10.1016/j.colsurfb.2024.114219.
|
57. |
Chen S, Chen X, Geng Z, Su J. The horizon of bone organoid: A perspective on construction and application. Bioact Mater, 2022, 18: 15-25.
|
58. |
Wang J, Wu Y, Li G, et al. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater, 2024, 36(30): e2309875. doi: 10.1002/adma.202309875.
|
59. |
Zhao D, Saiding Q, Li Y, et al. Bone organoids: Recent advances and future challenges. Adv Healthc Mater, 2024, 13(5): e2302088. doi: 10.1002/adhm.202302088.
|