1. |
Ye L, Chang YH, Xiong Q, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell, 2014, 15(6):750-761.
|
2. |
Murry CE, Whitney ML, Laflamme MA, et al. Cellular therapies for myocardial infarct repair. Cold Spring Harb Symp Quant Biol, 2002, 67:519-526.
|
3. |
Muller-Ehmsen J, Peterson KL, Kedes L, et al. Rebuilding a damaged heart:long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation, 2002, 105(14):1720-1726.
|
4. |
Etzion S, Battler A, Barbash IM, et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol, 2001, 33(7):1321-1330.
|
5. |
Koh GY, Klug MG, Soonpaa MH, et al. Differentiation and longterm survival of C2C12 myoblast grafs in heart. J Clin Invest, 1993, 92(3):1548-1554.
|
6. |
Zhu K, Guo C, Xia Y, et al. Transplantation of novel vascular endothelial growth factor gene delivery system manipulated skeletal myoblasts promote myocardial repair. Int J Cardiol, 2013, 168(3):2622-2631.
|
7. |
Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol, 2003, 41(5):879-888.
|
8. |
Shudo Y, Miyagawa S, Ohkura H, et al. Addition of mesenchymal stem cells enhances the therapeutic effects of skeletal myoblast cell-sheet transplantation in a rat ischemic cardiomyopathy model. Tissue Eng Part A, 2014, 20(3-4):728-739.
|
9. |
Kellar RS, Shepherd BR, Larson DF, et al. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function afer acute infarct. Tissue Eng, 2005, 11(11-12):1678-1687.
|
10. |
Wei F, Wang T, Liu J, et al. The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells. Exp Cell Res, 2011, 317(18):2661-2670.
|
11. |
Jeevanantham V, Butler M, Saad A, et al. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters:a systematic review and meta-analysis. Circulation, 2012, 126(5):551-568.
|
12. |
Francis DP, Mielewczik M, Zargaran D, et al. Autologous bone marrow-derived stem cell therapy in heart disease:discrepancies and contradictions. Int J Cardiol, 2013, 168(4):3381-3403.
|
13. |
Williams AR, Hare JM. Mesenchymal stem cells:biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res, 2011, 109(8):923-940.
|
14. |
Liu B, Duan CY, Luo CF, et al. Effectiveness and safety of selected bone marrow stem cells on left ventricular function in patients with acute myocardial infarction:A meta-analysis of randomized controlled trials. Int J Cardiol, 2014, 177(3):764-770.
|
15. |
Emmert MY, Weber B, Wolint P, et al. Intramyocardial transplantation and tracking of human mesenchymal stem cells in a novel intra-uterine pre-immune fetal sheep myocardial infarction model:a proof of concept study. Plos One, 2013, 8(3):e57759.
|
16. |
Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J, 2009, 30(22):2722-2732.
|
17. |
Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy:functional recovery and reverse remodeling. Circ Res, 2011, 108(7):792-796.
|
18. |
Behfar A, Yamada S, Crespo-Diaz R, et al. Guided cardiopoiesis enhances therapeutic beneft of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol, 2010, 56(9):721-734.
|
19. |
Kawamoto A, Iwasaki H, Kusano K, et al. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization afer myocardial infarction compared with total mononuclear cells. Circulation, 2006, 114(20):2163-2169.
|
20. |
Losordo DW, Schatz RA, White CJ, et al. Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina:a phase I/Ⅱa double-blind, randomized controlled trial. Circulation, 2007, 115(25):3165-3172.
|
21. |
Stamm C, Kleine HD, Choi YH, et al. Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafing for chronic ischemic heart disease:safety and efcacy studies. J Torac Cardiovasc Surg, 2007, 133(3):717-725.
|
22. |
Yerebakan C, Kaminski A, Westphal B, et al. Impact of preoperative lef ventricular function and time from infarction on the long-term benefits after intramyocardial CD133(+) bone marrow stem cell transplant. J Torac Cardiovasc Surg, 2011, 142(6):1530-1539.
|
23. |
Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004, 428(6983):668-673.
|
24. |
Zhu Y, Liu T, Song K, et al. Collagen-chitosan polymer as a scaffold for the proliferation of human adipose tissue-derived stem cells. J Mater Sci Mater Med, 2009, 20(3):799-808.
|
25. |
Paul A, Srivastava S, Chen G, et al. Functional assessment of adipose stem cells for xenotransplantation using myocardial infarction immunocompetent models:comparison with bone marrow stem cells. Cell Biochem Biophys, 2013, 67(2):263-273.
|
26. |
Emmert MY, Emmert LS, Martens A, et al. Higher frequencies of BCRP+ cardiac resident cells in ischaemic human myocardium. Eur Heart J, 2013, 34(36):2830-2838.
|
27. |
Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res, 2004, 95(9):911-921.
|
28. |
Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 2003, 114(6):763-776.
|
29. |
Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 2005, 433(7026):647-653.
|
30. |
Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiospherederived cells for heart regeneration after myocardial infarction (CADUCEUS):a prospective, randomised phase 1 trial. Lancet, 2012, 379(9819):895-904.
|
31. |
Klug MG, Soonpaa MH, Koh GY, et al. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafs. J Clin Invest, 1996, 98(1):216-224.
|
32. |
Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007, 25(9):1015-1024.
|
33. |
Park IH, Zhao R, West JA, et al. Reprogramming of human somatic cells to pluripotency with defned factors. Nature, 2008, 451(7175):141-146.
|
34. |
Iglesias-Garcia O, Pelacho B, Prosper F. Induced pluripotent stem cells as a new strategy for cardiac regeneration and disease modeling. J Mol Cell Cardiol, 2013, 62:43-50.
|
35. |
Chong JJ, Murry CE. Cardiac regeneration using pluripotent stem cells——Progression to large animal models. Stem Cell Res, 2014, 13(3PB):654-665.
|
36. |
Kawamura M, Miyagawa S, Miki K, et al. Feasibility, safety, and therapeutic efcacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation, 2012, 126(11 Suppl 1):S29-S37.
|
37. |
Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009, 4(6):472-476.
|
38. |
Lister R, Pelizzola M, Kida YS, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471(7336):68-73.
|
39. |
Qian L, Huang Y, Spencer CI, et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, 2012, 485(7400):593-598.
|
40. |
Muraoka N, Ieda M. Direct reprogramming of fibroblasts into myocytes to reverse fbrosis. Annu Rev Physiol, 2014, 76:21-37.
|