1. |
Loprinzi PD. Physical activity and peripheral arterial disease among patients with coronary artery disease or congestive heart failure. Int J Cardiol, 2016, 207(1): 110-111.
|
2. |
Michel A, Martin-Perez M, Ruigomez A, et al. Incidence and risk factors for severe renal impairment after first diagnosis of heart failure: A cohort and nested case-control study in UK general practice. Int J Cardiol, 2016, 207(1): 252-257.
|
3. |
Correa AD, Makdisse M, Katz M, et al. Analysis treatment guide-line versus clinical practice protocol in patients hospitalized due to heart failure. Arq Bras Cardiol, 2016, 106(3): 210-217.
|
4. |
Shen H, Wang Y, Zhang Z, et al. Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells Int, 2015, 2015: 524756.
|
5. |
Perin EC, Borow KM, Silva GV, et al. A Phase II dose-escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res, 2015, 117(6): 576-584.
|
6. |
Suresh SC, Selvaraju V, Thirunavukkarasu M, et al. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol, 2015, 201(10): 517-528.
|
7. |
Hou L, Kim JJ, Woo YJ, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol, 2016, 310(4): H455-H465.
|
8. |
Teng X, Chen L, Chen W, et al. Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem, 2015, 37(6): 2415-2424.
|
9. |
Kim SW, Jin HL, Kang SM, et al. Therapeutic effects of late outgrowth endothelial progenitor cells or mesenchymal stem cells derived from human umbilical cord blood on infarct repair. Int J Cardiol, 2016, 203: 498-507.
|
10. |
Kim HJ, Kwon YR, Bae YJ, et al. Enhancement of human mesench-ymal stem cell differentiation by combination treatment with 5-azacytidine and trichostatin A. Biotechnol Lett, 2016, 38(1): 167-174.
|
11. |
Deng F, Lei H, Hu Y, et al. Combination of retinoic acid, dimethyl sulfoxide and 5-azacytidine promotes cardiac differentiation of human fetal liver-derived mesenchymal stem cells. Cell Tissue Bank, 2016, 17(1): 147-159.
|
12. |
Venugopal JR, Prabhakaran MP, Mukherjee S, et al. Biomaterial strategies for alleviation of myocardial infarction. J R Soc Interface, 2012, 9(66): 1-19.
|
13. |
Musialek P, Mazurek A, Jarocha D, et al. Myocardial regeneration strategy using Wharton's jelly mesenchymal stem cells as an off-the-shelf 'unlimited' therapeutic agent: results from the Acute Myocar-dial Infarction First-in-Man Study. Postepy Kardiol Interwencyjnej, 2015, 11(2): 100-107.
|
14. |
Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myoc-ardial infarction. Eur Heart J, 2007, 28(6): 766-772.
|
15. |
Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neov-ascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation, 2004, 109(13): 1615-1622.
|
16. |
Lu W, Xiu X, Zhao Y, et al. Improved proliferation and differentia-tion of bone marrow mesenchymal stem cells into vascular endothe-lial cells with sphingosine 1-phosphate. Transplant Proc, 2015, 47 (6): 2035-2040.
|
17. |
Zafir A, Bradley JA, Long BW, et al. O-GlcNAcylation negatively regulates cardiomyogenic fate in adult mouse cardiac mesenchymal stromal cells. PLoS One, 2015, 10(11): e0142939.
|
18. |
Fukuda K. Use of adult marrow mesenchymal stem cells for regener-ation of cardiomyocytes. Bone Marrow Transplant, 2003, 32 (Suppl 1): S25-S27.
|
19. |
Supokawej A, Kheolamai P, Nartprayut K, et al. Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacy-tidine treatment. Turk J Haematol, 2013, 30(2): 115-121.
|
20. |
Madonna R, Petrov L, Teberino MA, et al. Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovasc Res, 2015, 108(1): 39-49.
|
21. |
Schmuck EG, Koch JM, Hacker TA, et al. Intravenous followed by x-ray fused with MRI-guided transendocardial mesenchymal stem cell injection improves contractility reserve in a swine model of myocardial infarction. J Cardiovasc Transl Res, 2015, 8(7): 438-448.
|
22. |
Hua P, Tao J, Liu JY, et al. Cell transplantation into ischemic myoc-ardium using mesenchymal stem cells transfected by vascular endo-thelial growth factor. Int J Clin Exp Pathol, 2014, 7(11): 7782-7788.
|
23. |
Tong J, Ding J, Shen X, et al. Mesenchymal stem cell transplanta-tion enhancement in myocardial infarction rat model under ultraso-und combined with nitric oxide microbubbles. PLoS One, 2013, 8(11): e80186.
|
24. |
Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004, 428(6983): 664-668.
|
25. |
Rose RA, Jiang H, Wang X, et al. Bone marrow-derived mesenchy-mal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells, 2008, 26(11): 2884-2892.
|
26. |
Santos Nascimento D, Mosqueira D, Sousa LM, , et al. Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapo-ptotic, and endogenous cell-activation mechanisms. Stem Cell Res Ther, 2014, 5(1): 5.
|
27. |
Dayan V, Yannarelli G, Billia F, et al. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol, 2011, 106(6): 1299-1310.
|
28. |
Vassalli G, Moccetti T. Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction. Swiss Med Wkly, 2011, 141: w13209.
|
29. |
Guo HD, Wang HJ, Tan YZ, et al. Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction. Tissue Eng Part A, 2011, 17(1-2): 45-58.
|
30. |
Rahbarghazi R, Nassiri SM, Khazraiinia P, et al. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev, 2013, 22(6): 855-865.
|
31. |
Li Z, Guo X, Palmer AF, et al. High-efficiency matrix modulus-induced cardiac differentiation of human mesenchymal stem cells inside a thermosensitive hydrogel. Acta Biomater, 2012, 8(10): 3586-3595.
|
32. |
Cashman TJ, Gouon-Evans V, Costa KD. Mesenchymal stem cells for cardiac therapy: practical challenges and potential mechanisms. Stem Cell Rev, 2013, 9(3): 254-265.
|
33. |
Sheng CC, Zhou L, Hao J. Current stem cell delivery methods for myocardial repair. Biomed Res Int, 2013, 2013: 547902.
|
34. |
Strauer BE, Brehm M, Zeus T, et al. Intrakoronare, humane autologe Stammzelltransplantation zur Myokardregeneration nach Herzin-farkt. Dtsch Med Wochenschr, 2001, 126(34-35): 932-938.
|
35. |
Schächinger V, Erbs S, Elsässer A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med, 2006, 355(12): 1210-1221.
|
36. |
Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived proge-nitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J, 2006, 27(23): 2775-2783.
|
37. |
Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplanta-tion of bone marrow progenitor cells in patients with acute myocar-dial infarction: the Doppler Substudy of the Reinfusion of Enriched Progenitor Cells and Infarct Remodeling in Acute Myocardial Infarction (REPAIR-AMI) trial. Circulation, 2007, 116(4): 366-374.
|
38. |
Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair. Arch Intern Med, 2007, 167(10): 989-997.
|
39. |
Singh S, Arora R, Handa K, et al. Stem cells improve left ventricular function in acute myocardial infarction. Clin Cardiol, 2009, 32(4): 176-180.
|
40. |
Zhou Y, Singh AK, Hoyt RF, et al. Regulatory T cells enhance mesen-chymal stem cell survival and proliferation following autologous cotransplantation in ischemic myocardium. J Thorac Cardiovasc Surg, 2014, 148(3): 1131-1137.
|
41. |
Yao Y, Zhang F, Wang L, et al. Lipopolysaccharide preconditioning enhances the efficacy of mesenchymal stem cells transplantation in a rat model of acute myocardial infarction. J Biomed Sci, 2009, 16(10): 74.
|
42. |
Rodrigues M, Turner O, Stolz D, et al. Production of reactive oxygen species by multipotent stromal cells/mesenchymal stem cells upon exposure to fas ligand. Cell Transplant, 2012, 21(10): 2171-2187.
|
43. |
Lu WB, Tang Y, Zhang ZW, et al. Inhibiting the mobilization of Ly6Chigh monocytes after acute myocardial infarction enhances the efficiency of mesenchymal stromal cell transplantation and curbs myocardial remodeling. Am J Transl Res, 2015, 7(3): 587-597.
|
44. |
王峰, 肖明第, 廖斌, 等.小肠粘膜下层-骨髓间充质干细胞移植治疗陈旧性心肌梗死.中国胸心血管外科临床杂志, 2010, 17(4): 344-346.
|
45. |
周骐, 周建业, 胡盛寿, 等.大网膜联合组织工程心肌移植改善心肌梗死后大鼠心功能.中国胸心血管外科临床杂志, 2008, 15(6): 432-437.
|