1. |
American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, et al. ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation, 2006, 114(5): e84-e231.
|
2. |
Carabello BA, Paulus WJ. Aortic stenosis. Lancet, 2009, 373(9667): 956-966.
|
3. |
Lind L. Comment on JIM-16-0640.R1. 'Mortality from aortic stenosis-prospective study of serum calcium and phosphate' by D. Wald. J Intern Med, 2017, 281(4): 412-413.
|
4. |
Carità P, Coppola G, Novo G, et al. Aortic stenosis: insights on pathogenesis and clinical implications. J Geriatr Cardiol, 2016, 13(6): 489-498.
|
5. |
Libby P, Aikawa M. Mechanisms of plaque stabilization with statins. Am J Cardiol, 2003, 91(4A): 4B-8B.
|
6. |
Dunning J, Gao H, Chambers J, et al. Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use——an analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. J Thorac Cardiovasc Surg, 2011, 142(4): 776-782.
|
7. |
Ten Kate GR, Bos S, Dedic A, et al. Increased aortic valve calcification in familial hypercholesterolemia: prevalence, extent, and associated risk factors. J Am Coll Cardiol, 2015, 66(24): 2687-2695.
|
8. |
Rajamannan NM, Subramaniam M, Springett M, et al. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation, 2002, 105(22): 2660-2665.
|
9. |
Mathieu P, Bouchareb R, Boulanger MC. Innate and adaptive immunity in calcific aortic valve disease. J Immunol Res, 2015, 2015: 851945.
|
10. |
Yang H, Mohamed AS, Zhou SH. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis, 2012, 11: 85.
|
11. |
Lichtman AH, Binder CJ, Tsimikas S, et al. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest, 2013, 123(1): 27-36.
|
12. |
Côté N, Pibarot P, Pépin A, et al. Oxidized low-density lipoprotein, angiotensin II and increased waist cirumference are associated with valve inflammation in prehypertensive patients with aortic stenosis. Int J Cardiol, 2010, 145(3): 444-449.
|
13. |
Capoulade R, Chan KL, Yeang C, et al. Oxidized phospholipids, lipoprotein(a), and progression of calcific aortic valve stenosis. J Am Coll Cardiol, 2015, 66(11): 1236-1246.
|
14. |
Mahmut A, Boulanger MC, El Husseini D, et al. Elevated expression of lipoprotein-associated phospholipase A2 in calcific aortic valve disease: implications for valve mineralization. J Am Coll Cardiol, 2014, 63(5): 460-469.
|
15. |
Oury C, Servais L, Bouznad N, et al. MicroRNAs in valvular heart diseases: potential role as markers and actors of valvular and cardiac remodeling. Int J Mol Sci, 2016, 17(7). pii: E1120.
|
16. |
Pillai ICL, Li S, Romay M, et al. Cardiac fibroblasts adopt osteogenic fates and can be targeted to attenuate pathological heart calcification. Cell Stem Cell, 2017, 20(2): 218-232.
|
17. |
Shapiro MD, Fazio S. Apolipoprotein B-containing lipoproteins and atherosclerotic cardiovascular disease. F1000Res, 2017, 6: 134.
|
18. |
Cao J, Steffen BT, Budoff M, et al. Lipoprotein(a) levels are associated with subclinical calcific aortic valve disease in white and black individuals: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol, 2016, 36(5): 1003-1009.
|
19. |
Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, et al. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA, 2009, 301(22): 2331-2339.
|
20. |
Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med, 2009, 361(26): 2518-2528.
|
21. |
Thanassoulis G, Campbell CY, Owens DS, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med, 2013, 368(6): 503-512.
|
22. |
Galeone A, Paparella D, Colucci S, et al. The role of TNF-α and TNF superfamily members in the pathogenesis of calcific aortic valvular disease. Scien World J, 2013, 2013: 875363.
|
23. |
Wu B, Wang Y, Xiao F, et al. Developmental mechanisms of aortic valve malformation and disease. Annu Rev Physiol, 2017, 79: 21-41.
|
24. |
Kaden JJ, Kiliç R, Sarikoç A, et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med, 2005, 16(5): 869-872.
|
25. |
Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003, 3(9): 745-756.
|
26. |
El Husseini D, Boulanger MC, Mahmut A, et al. P2Y2 receptor represses IL-6 expression by valve interstitial cells through Akt: implication for calcific aortic valve disease. J Mol Cell Cardiol, 2014, 72: 146-156.
|
27. |
Zhou J, Zhu J, Jiang L, et al. Interleukin 18 promotes myofibroblast activation of valvular interstitial cells. Int J Cardiol, 2016, 221: 998-1003.
|
28. |
DoiT, Sakoda T, Akagami T, et al. Aldosterone induces interleukin-18 through endothelin-1, angiotensin II, Rho/Rho-kinase, and PPARs in cardiomyocytes. Am J Physiol Heart Circ Physiol, 2008, 295(3): H1279-H1287.
|
29. |
Dinarello CA, Nold-Petry C, Nold M, et al. Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol, 2016, 46(5): 1067-1081.
|
30. |
Zeng Q, Song R, Fullerton DA, et al. Interleukin-37 suppresses the osteogenic responses of human aortic valve interstitial cells in vitro and alleviates valve lesions in mice. Proc Natl Acad Sci USA, 2017, 114(7): 1631-1636.
|
31. |
Du Y, Wang Y, Wang L, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res, 2011, 108(8): 917-928.
|
32. |
Song R, Fullerton DA, Ao L, et al. An epigenetic regulatory loop controls pro-osteogenic activation by TGF-β1 or bone morphogenetic protein 2 in human aortic valve interstitial cells. J Biol Chem, 2017, 292(21): 8657-8666.
|
33. |
Song R, Fullerton DA, Ao L, et al. BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells. J Mol Med (Berl), 2015, 93(4): 403-412.
|
34. |
Imamura T, Oshima Y, Hikita A. Regulation of TGF-β family signalling by ubiquitination and deubiquitination. J Biochem, 2013, 154(6): 481-489.
|
35. |
Winchester R, Wiesendanger M, O'Brien W, et al. Circulating activated and effector memory T cells are associated with calcification and clonal expansions in bicuspid and tricuspid valves of calcific aortic stenosis. J Immunol, 2011, 187(2): 1006-1014.
|
36. |
Ohukainen P, Syväranta S, Näpänkangas J, et al. MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease. Ann Med, 2015, 47(5): 423-429.
|
37. |
Nigam V, Sievers HH, Jensen BC, et al. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis, 2010, 19(4): 459-465.
|
38. |
Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol, 2009, 47(6): 828-834.
|
39. |
El Accaoui RN, Gould ST, Hajj GP, et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol, 2014, 306(9): H1302-H1313.
|
40. |
Pan S, Zheng Y, Zhao R, et al. MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs. Br J Nutr, 2013, 109(10): 1731-1738.
|
41. |
Li G, Qiao W, Zhang W, et al. The shift of macrophages toward M1 phenotype promotes aortic valvular calcification. J Thorac Cardiovasc Surg, 2017, 153(6): 1318-1327.
|
42. |
Romaine SP, Tomaszewski M, Condorelli G, et al. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart, 2015, 101(12): 921-928.
|
43. |
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet, 2009, 10(3): 155-159.
|
44. |
Fu XD. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev, 2014, 1(2): 190-204.
|
45. |
Carrion K, Dyo J, Patel V, et al. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One, 2014, 9(5): e96577.
|
46. |
Matouk I, Raveh E, Ohana P, et al. The increasing complexity of the oncofetal h19 gene locus: functional dissection and therapeutic intervention. Int J Mol Sci, 2013, 14(2): 4298-4316.
|
47. |
Jang WG, Kim EJ, Kim DK, et al. BMP2 protein regulates osteocalcin expression via Runx2-mediated Atf6 gene transcription. J Biol Chem, 2012, 287(2): 905-915.
|
48. |
Liang WC, Fu WM, Wang YB, et al. H19 activates Wnt signaling and promotes osteoblast differentiation by functioning as a competing endogenous RNA. Sci Rep, 2016, 6: 20121.
|
49. |
Hadji F, Boulanger MC, Guay SP, et al. Altered DNA Methylation of Long Noncoding RNA H19 in Calcific Aortic Valve Disease Promotes Mineralization by Silencing NOTCH1. Circulation, 2016, 134(23): 1848-1862.
|
50. |
Lefort K, Mandinova A, Ostano P, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev, 2007, 21(5): 562-577.
|