1. |
Lindh JD, Holm L, Dahl ML, et al. Incidence and predictors of severe bleeding during warfarin treatment. J Thromb Thrombolysis, 2008, 25(2): 151-159.
|
2. |
Ansell J, Hirsh J, Hylek E, et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest, 2008, 133(6 Suppl): 160S-198S.
|
3. |
Yin T, Miyata T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - rationale and perspectives. Thromb Res, 2007, 120(1): 1-10.
|
4. |
Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev, 2006, 58(3): 521-590.
|
5. |
Kim K, Johnson JA, Derendorf H. Differences in drug pharmacokinetics between East Asians and Caucasians and the role of genetic polymorphisms. J Clin Pharmacol, 2004, 44(10): 1083-1105.
|
6. |
Gage BF, Eby C, Milligan PE, et al. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb Haemost, 2004, 91(1): 87-94.
|
7. |
Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J, 2007, 7(2): 99-111.
|
8. |
Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and meta-analysis. Genet Med, 2005, 7(2): 97-104.
|
9. |
Voora D, McLeod HL, Eby C, et al. The pharmacogenetics of coumarin therapy. Pharmacogenomics, 2005, 6(5): 503-513.
|
10. |
D'Andrea G, D'Ambrosio R, Margaglione M. Oral anticoagulants: Pharmacogenetics relationship between genetic and non-genetic factors. Blood Rev, 2008, 22(3): 127-140.
|
11. |
Wang D, Chen H, Momary KM, et al. Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood, 2008, 112(4): 1013-1021.
|
12. |
Tian L, Zhang J, Xiao S, et al. Impact of polymorphisms of the GGCX gene on maintenance warfarin dose in Chinese populations: Systematic review and meta-analysis. Meta Gene, 2015, 5: 43-54.
|
13. |
Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost, 2007, 5(11): 2227-2234.
|
14. |
Sun Y, Wu Z, Li S, et al. Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res, 2015, 135(4): 739-747.
|
15. |
Gong X, Gutala R, Jaiswal AK. Quinone oxidoreductases and vitamin K metabolism. Vitam Horm, 2008, 78: 85-101.
|
16. |
Traver RD, Siegel D, Beall HD, et al. Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer, 1997, 75(1): 69-75.
|
17. |
Kelsey KT, Ross D, Traver RD, et al. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer, 1997, 76(7): 852-854.
|
18. |
de Visser MC, Roshani S, Rutten JW, et al. Haplotypes of VKORC1, NQO1 and GGCX, their effect on activity levels of vitamin K-dependent coagulation factors, and the risk of venous thrombosis. Thromb Haemost, 2011, 106(3): 563-565.
|
19. |
Hirai K, Hayashi H, Ono Y, et al. Influence of CYP4F2 polymorphisms and plasma vitamin K levels on warfarin sensitivity in Japanese pediatric patients. Drug Metab Pharmacokinet, 2013, 28(2): 132-137.
|
20. |
Singh O, Sandanaraj E, Subramanian K, et al. Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients. Drug Metab Pharmacokinet, 2011, 26(2): 130-136.
|
21. |
Hirai K, Yamada Y, Hayashi H, et al. Plasma vitamin K concentrations depend on CYP4F2 polymorphism and influence on anticoagulation in Japanese patients with warfarin therapy. Thromb Res, 2015, 135(5): 861-866.
|
22. |
Liang R, Wang C, Zhao H, et al. Influence of CYP4F2 genotype on warfarin dose requirement-a systematic review and meta-analysis. Thromb Res, 2012, 130(1): 38-44.
|
23. |
Gan GG, Phipps ME, Lee MM, et al. Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations. Ann Hematol, 2011, 90(6): 635-641.
|
24. |
Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA, 2002, 287(13): 1690-1698.
|
25. |
Lindh JD, Holm L, Andersson ML, et al. Influence of CYP2C9 genotype on warfarin dose requirements--a systematic review and meta-analysis. Eur J Clin Pharmacol, 2009, 65(4): 365-375.
|
26. |
Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J, 2003, 3(4): 202-214.
|
27. |
Yang L, Ge W, Yu F, et al. Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement--a systematic review and meta analysis. Thromb Res, 2010, 125(4): e159-e166.
|
28. |
Liang R, Li L, Li C, et al. Impact of CYP2C9*3, VKORC1-1639, CYP4F2rs2108622 genetic polymorphism and clinical factors on warfarin maintenance dose in Han-Chinese patients. J Thromb Thrombolysis, 2012, 34(1): 120-125.
|
29. |
Sun X, Yu WY, Ma WL, et al. Impact of the CYP4F2 gene polymorphisms on the warfarin maintenance dose: A systematic review and meta-analysis. Biomed Rep, 2016, 4(4): 498-506.
|
30. |
Sun Y, Wu Z, Li S, et al. Impact of gamma-glutamyl carboxylase gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Thromb Res, 2015, 135(4): 739-747.
|
31. |
Liu YQ, Yang BH, Xia JM, et al. Research on correlation between GGCX (rs6738645) polymorphism and warfarin stable dose. Chongqing Med, 2014, 43(10): 1184-1186.
|
32. |
Huang SW, Xiang DK, Huang L, et al. Influence of GGCX genotype on warfarin dose requirements in Chinese patients. Thromb Res, 2011, 127(2): 131-134.
|
33. |
Kamali X, Wulasihan M, Yang YC, et al. Association of GGCX gene polymorphism with warfarin dose in atrial fibrillation population in Xinjiang. Lipids Health Dis, 2013, 12: 149.
|
34. |
Dang MT, Hambleton J, Kayser SR. The influence of ethnicity on warfarin dosage requirement. Ann Pharmacother, 2005, 39(6): 1008-1012.
|
35. |
Bress A, Patel SR, Perera MA, et al. Effect of NQO1 and CYP4F2 genotypes on warfarin dose requirements in Hispanic-Americans and African-Americans. Pharmacogenomics, 2012, 13(16): 1925-1935.
|
36. |
Perera MA, Cavallari LH, Limdi NA, et al. Genetic variants associated with warfarin dose in African-American individuals: a genome-wide association study. Lancet, 2013, 382(9894): 790-796.
|
37. |
Fung E, Patsopoulos NA, Belknap SM, et al. Effect of genetic variants, especially CYP2C9 and VKORC1, on the pharmacology of warfarin. Semin Thromb Hemost, 2012, 38(8): 893-904.
|
38. |
Su W, Mrug S, Windle M. Social cognitive and emotional mediators link violence exposure and parental nurturance to adolescent aggression. J Clin Child Adolesc Psychol, 2010, 39(6): 814-824.
|
39. |
侯江龙, 董鑫, 王玉庆, 等. 非遗传因素与基因多态性对华法林临床用药稳定维持剂量的影响. 中国医学遗传学杂志, 2015, 32(5): 629-634.
|
40. |
Garcia D, Regan S, Crowther M, et al. Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest, 2005, 127(6): 2049-2056.
|
41. |
Harada T, Ariyoshi N, Shimura H, et al. Application of Akaike information criterion to evaluate warfarin dosing algorithm. Thromb Res, 2010, 126(3): 183-190.
|
42. |
王玉庆, 董力, 石应康, 等. 汉族人心脏瓣膜置换术后华法林用药剂量与基因型关系的相关性研究. 中国胸心血管外科临床杂志, 2016, 23(1): 1-6.
|
43. |
Kimmel SE, French B, Kasner SE, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med, 2013, 369(24): 2283-2293.
|
44. |
Pirmohamed M, Burnside G, Eriksson N, et al. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med, 2013, 369(24): 2294-2303.
|
45. |
Cavallari LH, Nutescu EA. Warfarin pharmacogenetics: to genotype or not to genotype, that is the question. Clin Pharmacol Ther, 2014, 96(1): 22-24.
|