1. |
Kiessling AH, Guo FW, Gökdemir Y, et al. The influence of selective pulmonary perfusion on the inflammatory response and clinical outcome of patients with chronic obstructive pulmonary disease undergoing cardiopulmonary bypass. Interact Cardiovasc Thorac Surg, 2014, 18(6): 732-739.
|
2. |
Ranucci M, Ballotta A, La Rovere MT, et al. Postoperative hypoxia and length of intensive care unit stay after cardiac surgery: the underweight paradox. PLoS One, 2014, 9(4): e93992.
|
3. |
Xing Z, Han J, Hao X, et al. Immature monocytes contribute to cardiopulmonary bypass-induced acute lung injury by generating inflammatory descendants. Thorax, 2017, 72(3): 245-255.
|
4. |
Laubach VE, Sharma AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant, 2016, 21(3): 246-252.
|
5. |
Steinbrenner H, Bilgic E, Pinto A, et al. Selenium pretreatment for mitigation of ischemia/reperfusion injury in cardiovascular surgery: influence on acute organ damage and inflammatory response. Inflammation, 2016, 39(4): 1363-1376.
|
6. |
Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol, 2014, 2: 702-714.
|
7. |
McDonald CI, Fraser JF, Coombes JS, et al. Oxidative stress during extracorporeal circulation. Eur J Cardiothorac Surg, 2014, 46(6): 937-943.
|
8. |
Salameh A, Dhein S. Strategies for pharmacological organoprotection during extracorporeal circulation targeting ischemia-reperfusion injury. Front Pharmacol, 2015, 6: 296.
|
9. |
凡小庆, 王瑞婷. 细胞因子与体外循环肺损伤的研究进展. 临床肺科杂志, 2014, 19(5): 892-894.
|
10. |
Chen H, Cheng ZB, Yu RG. Procalcitonin as a predictor of moderate to severe acute respiratory distress syndrome after cardiac surgery with cardiopulmonary bypass: a study protocol for a prospective cohort study. BMJ Open, 2014, 4(10).
|
11. |
Vakili M, Shirani S, Paknejad O, et al. Acute respiratory distress syndrome diagnosis after coronary artery bypass: comparison between diagnostic criteria and clinical picture. Acta Med Iran, 2015, 53(1): 51-56.
|
12. |
Bignami E, Guarnieri M, Saglietti F, et al. Different strategies for mechanical VENTilation during CardioPulmonary Bypass (CPBVENT 2014): study protocol for a randomized controlled trial. Trials, 2017, 18(1): 264.
|
13. |
Dennie C, Gee YY, Oikonomou A, et al. Clinical correlation of early atelectasis after bilateral internal thoracic artery harvest for coronary artery bypass grafting. Heart Lung Circ, 2016, 25(6): 620-625.
|
14. |
Kim TS, Lee JH, An H, et al. Transfusion risk and clinical knowledge (TRACK) score and cardiac surgery in patients refusing transfusion. J Cardiothorac Vasc Anesth, 2016, 30(2): 373-378.
|
15. |
Likosky DS, Paone G, Zhang M, et al. Red blood cell transfusions impact pneumonia rates after coronary artery bypass grafting. Ann Thorac Surg, 2015, 100(3): 794-800.
|
16. |
Liu K, Chen HL, You QS, et al. The relationship between total red blood cells and plasma transfusion and acute lung injury risk after cardiac surgery: a retrospective study. Transfus Apher Sci, 2014, 50(3): 427-432.
|
17. |
Wang XB, Li YS, Li J, et al. Interleukin-8-251A/T gene polymorphism and lung cancer susceptibility: a meta-analysis. J Cell Mol Med, 2015, 19(6): 1218-1222.
|
18. |
Sacuto Y, Sacuto T. Early pulmonary compliance increase during cardiac surgery predicted post-operative lung dysfunction. Perfusion, 2017, 32(8): 631-638.
|
19. |
Allou N, Bronchard R, Guglielminotti J, et al. Risk factors for postoperative pneumonia after cardiac surgery and development of a preoperative risk score. Crit Care Med, 2014, 42(5): 1150-1156.
|
20. |
李吉. 先天性心脏病并重度肺动脉高压51例临床手术分析. 大家健康(下旬版), 2016, 10(5): 117-117.
|
21. |
景小勇, 杨学勇, 苏俊武, 等. 先天性心脏病合并重度肺动脉高压诊断性治疗的临床研究. 心肺血管病杂志, 2016, 35(4): 293-296.
|
22. |
张丹. 先天性心脏病合并重度肺动脉高压手术治疗及术后随访. 首都医科大学, 2016.
|
23. |
Starinieri P, Declercq PE, Robic B, et al. A comparison between minimized extracorporeal circuits and conventional extracorporeal circuits in patients undergoing aortic valve surgery: is 'minimally invasive extracorporeal circulation' just low prime or closed loop perfusion. Perfusion, 2017, 32(5): 403-408.
|
24. |
Suehiro S, Shimizu K, Imai K, et al. Polymer-coated cardiopulmonary bypass circuit attenuates upregulation of both proteases/protease inhibitors and platelet degranulation in pigs. Perfusion, 2017, 32(8): 645-655.
|
25. |
Itoh H, Ichiba S, Ujike Y, et al. A prospective randomized trial comparing the clinical effectiveness and biocompatibility of heparin-coated circuits and PMEA-coated circuits in pediatric cardiopulmonary bypass. Perfusion, 2016, 31(3): 247-254.
|
26. |
Issitt R, Ball J, Bilkhoo I, et al. Leukocyte filtration of the cardiotomy suction. Does it affect systemic leukocyte activation or pulmonary function? Perfusion, 2017, 32(7): 574-582.
|
27. |
Luc JGY, Aboelnazar NS, Himmat S, et al. A leukocyte filter does not provide further benefit during ex vivo lung perfusion. ASAIO J, 2017, 63(5): 672-678.
|
28. |
Neal JR, Blau CL, Cornelius AM, et al. Novel applications of modified ultrafiltration and autologous priming techniques to reduce blood product exposure on ECMO. J Extra Corpor Technol, 2016, 48(1): 23-26.
|
29. |
Zakkar M, Guida G, Angelini GD. Modified ultrafiltration in adult patients undergoing cardiac surgery. Interact Cardiovasc Thorac Surg, 2015, 20(3): 415-421.
|
30. |
McRobb CM, Ing RJ, Lawson DS, et al. Retrospective analysis of eliminating modified ultrafiltration after pediatric cardiopulmonary bypass. Perfusion, 2017, 32(2): 97-109.
|
31. |
Ziyaeifard M, Alizadehasl A, Massoumi G. Modified ultrafiltration during cardiopulmonary bypass and postoperative course of pediatric cardiac surgery. Res Cardiovasc Med, 2014, 3(2): e17830.
|
32. |
Hofmann B, Kaufmann C, Stiller M, et al. Positive impact of retrograde autologous priming in adult patients undergoing cardiac surgery: a randomized clinical trial. J Cardiothorac Surg, 2018, 13(1): 50.
|
33. |
Jarral OA, Saso S, Harling L, et al. Organ dysfunction in patients with left ventricular impairment: what is the effect of cardiopulmonary bypass. Heart Lung Circ, 2014, 23(9): 852-862.
|
34. |
Farag M, Patil NP, Sabashnikov A, et al. Comparison of two miniaturized cardiopulmonary bypass systems regarding inflammatory response. Artif Organs, 2017, 41(2): 139-145.
|
35. |
Feng J, Liu H, Chen J, et al. Levosimendan reduces lung injury in a canine model of cardiopulmonary bypass. Korean Circ J, 2016, 46(3): 402-407.
|
36. |
Bignami E, Guarnieri M, Saglietti F, et al. Mechanical ventilation during cardiopulmonary bypass. J Cardiothorac Vasc Anesth, 2016, 30(6): 1668-1675.
|
37. |
Ferrando C, Soro M, Belda FJ. Protection strategies during cardiopulmonary bypass: ventilation, anesthetics and oxygen. Curr Opin Anaesthesiol, 2015, 28(1): 73-80.
|
38. |
Chen F, Duan G, Wu Z, et al. Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass: a systematic review and meta-analysis. BMJ Open, 2017, 7(10): e014629.
|
39. |
Whitlock R, Teoh K, Vincent J, et al. Rationale and design of the steroids in cardiac surgery trial. Am Heart J, 2014, 167(5): 660-665.
|
40. |
Whitlock RP, Devereaux PJ, Teoh KH, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet, 2015, 386(10000): 1243-1253.
|
41. |
Evora PR, Bottura C, Arcêncio L, et al. Key points for curbing cardiopulmonary bypass inflammation. Acta Cir Bras, 2016, 31.
|
42. |
王显悦, 张本, 董文鹏, 等. 乌司他丁对重度紫绀型先天性心脏病患儿的心肺保护作用. 华南国防医学杂志, 2016, 30(5): 301-304.
|
43. |
尹熙. 乌司他丁对体外循环术患者围术期肺功能影响的系统评价. 空军医学杂志, 2015, 31(3): 181-184.
|