1. |
Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2012). Arch Virol, 2012, 157(7): 1411-1422.
|
2. |
Zhong NS, Zeng GQ. Our strategies for fighting severe acute respiratory syndrome (SARS). Am J Respir Crit Care Med, 2003, 168(1): 7-9.
|
3. |
中华人民共和国国家卫生健康委员会. 新型冠状病毒肺炎诊疗方案 (试行第六版). (2020-02-19) http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm.
|
4. |
Raj VS, Mou H, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440): 251-254.
|
5. |
林长缨, 贺雄. SARS 病原学和流行病学研究进展-“非典”疫情 10 年回顾. 国际病毒学杂志, 2013, 20(6): 241-245.
|
6. |
中华人民共和国国家卫生健康委员会新型冠状病毒肺炎通告. (2020-02-18) http://www.nhc.gov. cn/xcs/yqtb/202002/261f72a74be14c4db6e1b582133cf4b7.shtml.
|
7. |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798): 265-269.
|
8. |
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450-454.
|
9. |
Wan Y, Shang J, Graham R, et al. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J Virol, 2020. [Epub ahead of print].
|
10. |
Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem, 2000, 275(43): 33238-33243.
|
11. |
Douglas GC, O'Bryan MK, Hedger MP, et al. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. Endocrinology, 2004, 145(10): 4703-4711.
|
12. |
Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436(7047): 112-116.
|
13. |
Ferrario CM, Chappell MC. Novel angiotensin peptides. Cell Mol Life Sci, 2004, 61(21): 2720-2727.
|
14. |
Hall JE. Historical perspective of the renin-angiotensin system. Mol Biotechnol, 2003, 24(1): 27-39.
|
15. |
Paul M, Poyan MA, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev, 2006, 86(3): 747-803.
|
16. |
Fliser D, Buchholz K, Haller H. Antiinflammatory effects of angiotensin Ⅱ subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation, 2004, 110(9): 1103-1107.
|
17. |
Rice GI, Thomas DA, Grant PJ, et al. Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J, 2004, 383(Pt 1): 45-51.
|
18. |
Burrell LM, Harrap SB, Velkoska E, et al. The ACE2 gene: its potential as a functional candidate for cardiovascular disease. Clin Sci (Lond), 2013, 124(2): 65-76.
|
19. |
Zisman LS, Keller RS, Weaver B, et al. Increased angiotensin-(1-7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation, 2003, 108(14): 1707-1712.
|
20. |
Yamazato M, Ferreira AJ, Yamazato Y, et al. Gene transfer of angiotensin-converting enzyme 2 in the nucleus tractus solitarius improves baroreceptor heart rate reflex in spontaneously hypertensive rats. J Renin Angiotensin Aldosterone Syst, 2011, 12(4): 456-461.
|
21. |
Feng Y, Xia H, Cai Y, et al. Brain-selective overexpression of human angiotensin-converting enzyme type 2 attenuates neurogenic hypertension. Circ Res, 2010, 106(2): 373-382.
|
22. |
Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. PLoS One, 2011, 6(7): e22682.
|
23. |
Lely AT, Hamming I, van Goor H, et al. Renal ACE2 expression in human kidney disease. J Pathol, 2004, 204(5): 587-593.
|
24. |
Ali Q, Patel S, Hussain T. Angiotensin AT2 receptor agonist prevents salt-sensitive hypertension in obese Zucker rats. Am J Physiol Renal Physiol, 2015, 308(12): F1379-F1385.
|
25. |
Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 2012, 487(7408): 477-481.
|
26. |
Santos RA, Frézard F, Ferreira AJ. Angiotensin-(1-7): blood, heart, and blood vessels. Curr Med Chem Cardiovasc Hematol Agents, 2005, 3(4): 383-391.
|
27. |
Chakraborti S, Prabakaran P, Xiao X, et al. The SARS coronavirus S glycoprotein receptor binding domain: fine mapping and functional characterization. Virol J, 2005, 2: 73.
|
28. |
McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol, 2007, 81(2): 813-821.
|
29. |
Qu XX, Hao P, Song XJ, et al. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J Biol Chem, 2005, 280(33): 29588-29595.
|
30. |
Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 2015, 89(4): 1954-1964.
|
31. |
Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J, 2005, 24(8): 1634-1643.
|
32. |
Li F, Li W, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742): 1864-1868.
|
33. |
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 2020, 63(3): 457-460.
|
34. |
Zhao Y, Zhao ZX, Wang YJ, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of 2019-nCov. BioRxiv, 2020. [Epub ahead of print]..
|
35. |
Reyfman PA, Walter JM, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med, 2019, 199(12): 1517-1536.
|
36. |
Cai GS. Bulk and single-cell transcriptomics identify tobacco-use disparity in lung gene expression of ACE2, the receptor of 2019-nCov. MedRxiv, 2020. [Epub ahead of print]..
|
37. |
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 2012, 4(4): 557-580.
|
38. |
Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A, 2004, 101(12): 4240-4245.
|
39. |
Huang IC, Bosch BJ, Li W, et al. SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect cells: viral entry. Adv Exp Med Biol, 2006, 581: 335-338.
|
40. |
Shulla A, Heald-Sargent T, Subramanya G, et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol, 2011, 85(2): 873-882.
|
41. |
Haga S, Yamamoto N, Nakai-Murakami C, et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A, 2008, 105(22): 7809-7814.
|
42. |
Haga S, Nagata N, Okamura T, et al. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res, 2010, 85(3): 551-555.
|
43. |
Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun, 2014, 5: 3594.
|
44. |
Wang R, Zagariya A, Ibarra-Sunga O, et al. Angiotensin Ⅱ induces apoptosis in human and rat alveolar epithelial cells. Am J Physiol, 1999, 276(5): L885-L889.
|
45. |
Shen L, Mo H, Cai L, et al. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock, 2009, 31(5): 500-506.
|
46. |
Wösten-van Asperen RM, Bos AP, Bem RA, et al. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome. Pediatr Crit Care Med, 2013, 14(9): e438-e441.
|
47. |
Li Y, Cao Y, Zeng Z, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/NF-kappaB pathways. Sci Rep, 2015, 5: 8209.
|
48. |
Uhal BD, Li X, Xue A, et al. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis. Am J Physiol Lung Cell Mol Physiol, 2011, 301(3): L269-L274.
|
49. |
Liu Q, Du J, Yu X, et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov, 2017, 3: 17021.
|
50. |
Liu X, Yang N, Tang J, et al. Downregulation of angiotensin-converting enzyme 2 by the neuraminidase protein of influenza A (H1N1) virus. Virus Res, 2014, 185: 64-71.
|
51. |
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 2005, 11(8): 875-879.
|
52. |
Yang Y, Lu QB, Liu MJ, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv, 2020. [Epub ahead of print].
|
53. |
Jerng JS, Yu CJ, Wang HC, et al. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med, 2006, 34(4): 1001-1006.
|
54. |
Tsantes AE, Kopterides P, Bonovas S, et al. Effect of angiotensin converting enzyme gene I/D polymorphism and its expression on clinical outcome in acute respiratory distress syndrome. Minerva Anestesiol, 2013, 79(8): 861-870.
|
55. |
陆海英, 霍娜, 童一帆, 等. SARS 伴腹泻病例的临床特点. 世界华人消化杂志, 2003, 11(12): 1929-1931.
|
56. |
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020. [Epub ahead of print].
|
57. |
赵景民, 周光德, 孙艳玲, 等. 严重急性呼吸综合征的临床病理及发病机制研究. 中华实验和临床病毒学杂志, 2003, 17(3): 217-221.
|
58. |
钟南山团队从尿液中分离出病毒. (2020-02-22) https://gzdaily.dayoo.com/pc/html/2020-02/22/node_127551.htm.
|
59. |
Li Z, Wu M, Guo J, et al. Caution on kidney dysfunctions of 2019-nCoV patients. MedRxiv, 2020. [Epub ahead of print].
|
60. |
周光德, 赵景民, 王松山, 等. SARS 冠状病毒对心脏及其传导系统影响的病理学研究. 解放军医学杂志, 2004, 29(1): 52-54.
|
61. |
Chai XQ, Hu LF, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. BioRxiv, 2020. [Epub ahead of print].
|
62. |
祁丽花, 迟晓春, 徐健, 等. SARS 男性患者睾丸组织的病理改变. 基础医学与临床, 2007, 27(1): 40-43.
|
63. |
In the absence of SARS-CoV transmission worldwide: guidance for surveillance, clinical and laboratory evaluation, and reporting (2003). http://www.cdc.gov/sars/surveillance/absence.html.
|
64. |
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 2020. [Epub ahead of print].
|
65. |
Savarino A, Boelaert JR, Cassone A, et al. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis, 2003, 3(11): 722-727.
|
66. |
Yan Y, Zou Z, Sun Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res, 2013, 23(2): 300-302.
|
67. |
中国临床试验注册中心. http://www.chictr.org.cn/searchproj.aspx?title=%E6%B0%AF%E5%96%B9&officialname=&subjectid=&secondaryid=&applier=&studyleader=ðicalcommitteesanction=&sponsor=&studyailment=&studyailmentcode=&studytype=0&studystage=0&studydesign=0&minstudyexecutetime=&maxstudyexecutetime=&recruitmentstatus=0&gender=0&agreetosign=&secsponsor=®no=®status=0&country=&province=&city=&institution=&institutionlevel=&measure=&intercode=&sourceofspends=&createyear=0&isuploadrf=&whetherpublic=&btngo=btn&verifycode=&page=1.
|
68. |
Chen C, Zhang Z, Li Z, et al. Losartan attenuates microvascular permeability in mechanical ventilator-induced lung injury in diabetic mice. Mol Biol Rep, 2014, 41(2): 809-814.
|
69. |
Asmussen S, Bartha E, Olah G, et al. The Angiotensin-converting enzyme inhibitor captopril inhibits poly(adp-ribose) polymerase activation and exerts beneficial effects in an ovine model of burn and smoke injury. Shock, 2011, 36(4): 402-409.
|
70. |
Kim J, Choi SM, Lee J, et al. Effect of renin-angiotensin system blockage in patients with acute respiratory distress syndrome: a retrospective case control study. Korean J Crit Care Med, 2017, 32(2): 154-163.
|
71. |
Ferreira AJ, Santos RA, Bradford CN, et al. Therapeutic implications of the vasoprotective axis of the renin-angiotensin system in cardiovascular diseases. Hypertension, 2010, 55(2): 207-213.
|
72. |
Haschke M, Schuster M, Poglitsch M, et al. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin Pharmacokinet, 2013, 52(9): 783-792.
|
73. |
Khan A, Benthin C, Zeno B, et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care, 2017, 21(1): 234.
|
74. |
Wu Y. Compensation of ACE2 function for possible clinical management of 2019-nCoV-induced acute lung injury. Virol Sin, 2020. [Epub ahead of print].
|