1. |
Wang J, Kunkel R, Luo J, et al. Shape memory polyurethane with porous architectures for potential applications in intracranial aneurysm treatment. Polymers (Basel), 2019, 11(4): E631.
|
2. |
刘德乡, 刘武, 叶志会, 等. 生物质基温敏智能材料的研究进展. 材料导报, 2019, 33(19): 3336-3346.
|
3. |
Lendlein A, Langer R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science, 2002, 296(5573): 1673-1676.
|
4. |
Hao X, Lv J, Li Q, et al. REDV-linked biodegradable polymeric micelles as the transfer vector of ZNF580 for the proliferation of endothelial cells. J Control Release, 2015, 213: e123.
|
5. |
Lohmann P, Willuweit A, Neffe AT, et al. Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials, 2017, 113: 158-169.
|
6. |
Brunacci N, Neffe AT, Wischke C, et al. Oligodepsipeptide (nano)carriers: Computational design and analysis of enhanced drug loading. J Control Release, 2019, 301: 146-156.
|
7. |
Behrens AM, Lee NG, Casey BJ, et al. Biodegradable-polymer-blend-based surgical sealant with body-temperature-mediated adhesion. Adv Mater, 2015, 27(48): 8056-8061.
|
8. |
Kim YJ, Matsunaga YT. Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B, 2017, 5(23): 4307-4321.
|
9. |
Bodaghi M, Damanpack AR, Liao WH. Triple shape memory polymers by 4D printing. Smart Mater Struct, 2018, 27(6): 065010.
|
10. |
Wei ZG, Sandstroröm R, Miyazaki S. Shape-memory materials and hybrid composites for smart systems-Part ⅠShape-memory materials. J Mater Sci, 1998, 33(1998): 3743-3762.
|
11. |
胡金莲. 形状记忆聚合物在生物医学领域的研究进展. 中国材料进展, 2015, 34(3): 191-203, 224.
|
12. |
Goraltchouk A, Lai J, Herrmann Robert A, inventors; Angiotech Pharmaceuticals, INC, assignee. Shape-memory self-retaining sutures, methods of manufacture, and methods of use. US Patent. 2011.
|
13. |
Zarek M, Mansour N, Shapira S, et al. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun, 2017, 38(2): 1600628.
|
14. |
Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004, 25(7-8): 1289-1297.
|
15. |
Langer H, Cabrera M. Method and apparatus for production of a three-dimensional object: US Patent.1995.
|
16. |
Tibbits, Skylar. 4D printing: multi-material shape change. Architectural Design, 2014, 84(1): 116-121.
|
17. |
Kuang X, Chen K, Dunn CK, et al. 3D printing of highly stretchable, shape-memory and self-healing elastomer toward novel 4D printing. ACS Appl Mater & Interfaces, 2018, 10(8): 7381-7388.
|
18. |
Monzón MD, Paz R, Pei E, et al. 4D printing: processability and measurement of recovery force in shape memory polymers. Int J Adv Manuf Technol, 2017, 89(5-8): 1827-1836.
|
19. |
Behrendt CA, Heidemann F, Haustein K, et al. Percutaneous endovascular treatment of infrainguinal PAOD: Results of the PSI register study in 74 German vascular centers. Gefasschirurgie, 2017, 22(Suppl 1): 17-27.
|
20. |
Garg K, Sell SA, Madurantakam P, et al. Angiogenic potential of human macrophages on electrospun bioresorbable vascular grafts. Biomed Mater, 2009, 4(3): 031001.
|
21. |
Zhu Y, Yang K, Cheng R, et al. The current status of biodegradable stent to treat benign luminal disease. Materialstoday, 2017, 20(9): 516-529.
|
22. |
Shin YC, Lee JB, Kim DH, et al. Development of a shape-memory tube to prevent vascular stenosis. Adv Mater, 2019, 31(41): e1904476.
|
23. |
Huang R, Gao X, Wang J, et al. Triple-layer vascular grafts fabricated by combined E-Jet 3D printing and electrospinning. Ann Biomed Eng, 2018, 46(9): 1254-1266.
|
24. |
Wei H, Zhang Q, Yao Y, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces, 2017, 9(1): 876-883.
|
25. |
Zheng Y, Li Y, Hu X, et al. Biocompatible shape memory blend for self-expandable stents with potential biomedical applications. ACS Appl Mater Interfaces, 2017, 9(16): 13988-13998.
|
26. |
Zhang J, Wang Y, Liu C, et al. Polyurethane/polyurethane nanoparticle-modified expanded poly(tetrafluoroethylene) vascular patches promote endothelialization. J Biomed Mater Res A, 2018, 106(8): 2131-2140.
|
27. |
Kim T, Lee YG. Shape transformable bifurcated stents. Sci Rep, 2018, 8(1): 13911.
|
28. |
Stone GW, Gao R, Kimura T, et al. 1-year outcomes with the absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet, 2016, 387(10025): 1277-1289.
|
29. |
Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization. Adv Mater, 2019, 31(33): e1901071.
|
30. |
Wong YS, Salvekar AV, Zhuang KD, et al. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials, 2016, 102: 98-106.
|
31. |
Landsman TL, Bush RL, Glowczwski A, et al. Design and verification of a shape memory polymer peripheral occlusion device. J Mech Behav Biomed Mater, 2016, 63: 195-206.
|
32. |
Singhal P, Small W, Cosgriff-Hernandez E, et al. Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomater, 2014, 10(1): 67-76.
|
33. |
解丽娟. 磁性形状记忆聚氨酯复合栓塞材料的生物学评价. 武汉理工大学, 2014.
|
34. |
Small WT, Wilson TS, Buckley PR, et al. Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device. IEEE Trans Biomed Eng, 2007, 54(9): 1657-1666.
|
35. |
Kumar B, Hu J, Pan N. Smart medical stocking using memory polymer for chronic venous disorders. Biomaterials, 2016, 75: 174-181.
|
36. |
Unnikrishnan S, Huynh TN, Brott BC, et al. Turbulent flow evaluation of the venous needle during hemodialysis. J Biomech Eng, 2005, 127(7): 1141-1146.
|
37. |
Ortega JM, Small WT, Wilson TS, et al. A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng, 2007, 54(9): 1722-1724.
|