1. |
Evangelista A, Isselbacher EM, Bossone E, et al. Insights from the International Registry of Acute Aortic Dissection: A 20-year experience of collaborative clinical research. Circulation, 2018, 137(17): 1846-1860.
|
2. |
Czerny M, Schmidli J, Adler S, et al. Current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: An expert consensus document of the european association for cardio-thoracic surgery (EACTS) and the european society for vascular surgery (ESVS). Eur J Cardiothorac Surg, 2019, 55(1): 133-162.
|
3. |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要. 中国循环杂志, 2020, 35(9): 833-854.
|
4. |
Humphrey JD, Schwartz MA, Tellides G, et al. Role of mechanotransduction in vascular biology: Focus on thoracic aortic aneurysms and dissections. Circ Res, 2015, 116(8): 1448-1461.
|
5. |
Sherifova S, Holzapfel GA. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: A review. Acta Biomater, 2019, 99: 1-17.
|
6. |
Saeyeldin AA, Velasquez CA, Mahmood SUB, et al. Thoracic aortic aneurysm: Unlocking the "silent killer" secrets. Gen Thorac Cardiovasc Surg, 2019, 67(1): 1-11.
|
7. |
Geyer PE, Holdt LM, Teupser D, et al. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol, 2017, 13(9): 942.
|
8. |
Takeda N, Hara H, Fujiwara T, et al. TGF-β signaling-related genes and thoracic aortic aneurysms and dissections. Int J Mol Sci, 2018, 19(7): 2125-2144.
|
9. |
Cifani N, Proietta M, Tritapepe L, et al. Stanford-A acute aortic dissection, inflammation, and metalloproteinases: A review. Ann Med, 2015, 47(6): 441-446.
|
10. |
Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem, 2017, 86: 159-192.
|
11. |
Graham SH, Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev, 2017, 34: 30-38.
|
12. |
Takami Y, Nakagami H, Morishita R, et al. Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arterioscler Thromb Vasc Biol, 2007, 27(10): 2184-2190.
|
13. |
Reinicke AT, Laban K, Sachs M, et al. Ubiquitin C-terminal hydrolase L1 (UCH-L1) loss causes neurodegeneration by altering protein turnover in the first postnatal weeks. Proc Natl Acad Sci U S A, 2019, 116(16): 7963-7972.
|
14. |
Gao X, Wu L, Wang K, et al. Ubiquitin carboxyl terminal hydrolase L1 attenuates TNF-α-mediated vascular smooth muscle cell migration through suppression of NF-κB activation. Int Heart J, 2018, 59(6): 1409-1415.
|
15. |
Cui GH, Shao SJ, Yang JJ, et al. Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer's disease via enhancing neuron differentiation and paracrine action. Mol Neurobiol, 2016, 53(2): 1108-1123.
|
16. |
Chen ZL, Yao Y, Norris EH, et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J Cell Biol, 2013, 202(2): 381-395.
|
17. |
Kleinhenz JM, Murphy TC, Pokutta-Paskaleva AP, et al. Smooth muscle-targeted overexpression of peroxisome proliferator activated receptor-γ disrupts vascular wall structure and function. PLoS One, 2015, 10(10): e0139756.
|
18. |
Wang J, Zhang Q, Li S, et al. Low molecular weight fucoidan alleviates diabetic nephropathy by binding fibronectin and inhibiting ECM-receptor interaction in human renal mesangial cells. Int J Biol Macromol, 2020, 150: 304-314.
|
19. |
Yan X, Li Y, Yu H, et al. Epigallocatechin-3-gallate inhibits H2O2-induced apoptosis in mouse vascular smooth muscle cells via 67 kD laminin receptor. Sci Rep, 2017, 7(1): 7774.
|
20. |
Wasiak S, Gilham D, Tsujikawa LM, et al. Downregulation of the complement cascade in vitro, in mice and in patients with cardiovascular disease by the BET protein inhibitor apabetalone (RVX-208). J Cardiovasc Transl Res, 2017, 10(4): 337-347.
|
21. |
Chen L, Fukuda N, Otsuki T, et al. Increased complement 3 with suppression of miR-145 induces the synthetic phenotype in vascular smooth muscle cells from spontaneously hypertensive rats. J Am Heart Assoc, 2019, 8(10): e012327.
|