1. |
Sade RM, Castaneda AR. Recent advances in cardiac surgery in the young infant. Surg Clin North Am, 1976, 56(2): 451-465.
|
2. |
Waterbury T, Clark TJ, Niles S, et al. Rat model of cardiopulmonary bypass for deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2011, 141(6): 1549-1551.
|
3. |
Rein JG, Freed MD, Norwood WI, et al. Early and late results of closure of ventricular septal defect in infancy. Ann Thorac Surg, 1977, 24(1): 19-27.
|
4. |
Zhu X, Ji B, Liu J, et al. Establishment of a novel rat model without blood priming during normothermic cardiopulmonary bypass. Perfusion, 2014, 29(1): 63-69.
|
5. |
Jiang X, Gu T, Liu Y, et al. A novel augmented venous-drainage model of cardiopulmonary bypass for deep hypothermic circulatory arrest without blood priming. Perfusion, 2018, 33(4): 297-302.
|
6. |
Shim JK, Ma Q, Zhang Z, et al. Effect of pregabalin on cerebral outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg, 2014, 148(1): 298-303.
|
7. |
Liu M, Zeng Q, Li Y, et al. Neurologic recovery after deep hypothermic circulatory arrest in rats: A description of a long-term survival model without blood priming. Artif Organs, 2019, 43(6): 551-560.
|
8. |
Jungwirth B, Mackensen GB, Blobner M, et al. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: Description of a new model. J Thorac Cardiovasc Surg, 2006, 131(4): 805-812.
|
9. |
Engels M, Bilgic E, Pinto A, et al. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J Inflamm (Lond), 2014, 11: 26.
|
10. |
Modine T, Azzaoui R, Fayad G, et al. A recovery model of minimally invasive cardiopulmonary bypass in the rat. Perfusion, 2006, 21(2): 87-92.
|
11. |
Gourlay T, Ballaux PK, Draper ER, et al. Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat. Perfusion, 2002, 17(3): 191-198.
|
12. |
Gao S, Gu T, Shi E, et al. Inhibition of long noncoding RNA growth arrest-specific 5 attenuates cerebral injury induced by deep hypothermic circulatory arrest in rats. J Thorac Cardiovasc Surg, 2019.
|
13. |
杨波, 苏肇伉, 陈惠文. 大鼠深低温停循环模型的建立. 临床儿科杂志, 2003, 6: 368-370.
|
14. |
田鑫, 江基尧, 邱永明, 等. 大鼠深低温停循环复苏模型的建立. 中华神经外科杂志, 2004, 20(5): 417-420.
|
15. |
You XM, Nasrallah F, Darling E, et al. Rat cardiopulmonary bypass model: Application of a miniature extracorporeal circuit composed of asanguinous prime. J Extra Corpor Technol, 2005, 37(1): 60-65.
|
16. |
Shen L, Wang J, Liu K, et al. Hydrogen-rich saline is cerebroprotective in a rat model of deep hypothermic circulatory arrest. Neurochem Res, 2011, 36(8): 1501-1511.
|
17. |
Gu Q, Gu H, Lu X, et al. The influence of deep hypothermic global brain ischemia on EEG in a new rat model. J Card Surg, 2012, 27(5): 612-617.
|
18. |
朱贤, 陆龙, 赵向东, 等. 不同温度大鼠无血预充深低温停循环模型的建立. 中国体外循环杂志, 2013, 11(2): 107-110, 115.
|
19. |
Bartels K, Ma Q, Venkatraman TN, et al. Effects of deep hypothermic circulatory arrest on the blood brain barrier in a cardiopulmonary bypass model—A pilot study. Heart Lung Circ, 2014, 23(10): 981-984.
|
20. |
李斌, 朱耀斌, 刘爱军, 等. 大鼠深低温停循环模型的建立. 中华实用诊断与治疗杂志, 2015, 29(7): 634-636.
|
21. |
郦安琪, 徐嗣卫, 陈文超, 等. 40分钟深低温停循环大鼠长期存活模型的建立. 中华急诊医学杂志, 2019, 28(4): 484-488.
|
22. |
张帅, 刘杨, 蒋璇, 等. 新型无血预充体外循环深低温停循环模型. 中国心血管病研究, 2020, 18(7): 647-651.
|
23. |
王立烽, 韦冬冬, 朱贤, 等. 闭式少预充量大鼠深低温停循环模型的建立. 浙江医学, 2020, 42(8): 770-774.
|
24. |
马晓洁, 罗璇, 张莉, 等. 延长创伤环境中暴露时间对雌雄大鼠行为差异及HPT轴的影响. 中华行为医学与脑科学杂志, 2020, 29(7): 584-588.
|
25. |
Ballaux PK, Gourlay T, Ratnatunga CP, et al. A literature review of cardiopulmonary bypass models for rats. Perfusion, 1999, 14(6): 411-417.
|
26. |
Ordodi VL, Paunescu V, Ionac M, et al. Artificial device for extracorporeal blood oxygenation in rats. Artif Organs, 2008, 32(1): 66-70.
|
27. |
Wang Y, Gu T, Shi E, et al. Inhibition of microRNA-29c protects the brain in a rat model of prolonged hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2015, 150(3): 675-684.
|
28. |
Li YA, Liu ZG, Zhang YP, et al. Differential expression profiles of circular RNAs in the rat hippocampus after deep hypothermic circulatory arrest. Artif Organs, 2021, 45(8): 866-880.
|
29. |
Chen Q, Lei YQ, Liu JF, et al. Triptolide improves neurobehavioral functions, inflammation, and oxidative stress in rats under deep hypothermic circulatory arrest. Aging (Albany NY), 2021, 13(2): 3031-3044.
|
30. |
Chen Q, Sun KP, Huang JS, et al. Resveratrol attenuates neuroinflammation after deep hypothermia with circulatory arrest in rats. Brain Res Bull, 2020, 155: 145-154.
|
31. |
Jenke A, Yazdanyar M, Miyahara S, et al. AdipoRon attenuates inflammation and impairment of cardiac function associated with cardiopulmonary bypass-induced systemic inflammatory response syndrome. J Am Heart Assoc, 2021, 10(6): e018097.
|
32. |
Shi J, Jiang X, Gao S, et al. Gene-modified exosomes protect the brain against prolonged deep hypothermic circulatory arrest. Ann Thorac Surg, 2021, 111(2): 576-585.
|
33. |
Liu M, Li Y, Gao S, et al. A novel target to reduce microglial inflammation and neuronal damage after deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg, 2020, 159(6): 2431-2444.
|
34. |
Li Y, Liu M, Gao S, et al. Cold-inducible RNA-binding protein maintains intestinal barrier during deep hypothermic circulatory arrest. Interact Cardiovasc Thorac Surg, 2019, 29(4): 583-591.
|
35. |
Weber C, Jenke A, Chobanova V, et al. Targeting of cell-free DNA by DNaseⅠ diminishes endothelial dysfunction and inflammation in a rat model of cardiopulmonary bypass. Sci Rep, 2019, 9(1): 19249.
|
36. |
Jiang X, Gu T, Liu Y, et al. Protection of the rat brain from hypothermic circulatory arrest injury by a chipmunk protein. J Thorac Cardiovasc Surg, 2018, 156(2): 525-536.
|