1. |
Siegel RL, Miller KD, Jemal A. Cancer statistics. 2016. CA Cancer J Clin, 2016, 66(1): 7-30.
|
2. |
Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108.
|
3. |
Walter JE, Heuvelmans MA, de Jong PA, et al. Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: Analysis of data from the randomised, controlled NELSON trial. Lancet Oncol, 2016, 17(7): 907-916.
|
4. |
Liang M, Tang W, Xu DM, et al. Low-dose CT screening for lung cancer: Computer-aided detection of missed lung cancers. Radiology, 2016, 281(1): 279-288.
|
5. |
Zhu WY, Tan LL, Wang Zy, et al. Clinical characteristics and advantages of primary peripheral micro-sized lung adenocarcinoma over small-sized lung adenocarcinoma. Eur J Cardiothorac Surg, 2016, 49(4): 1095-1102.
|
6. |
曹孟昆, 姜杰, 朱晓雷, 等. 人工智能肺部结节辅助诊疗系统预测肺结节的良恶性及浸润情况. 中国胸心血管外科临床杂志, 2021, 28(3): 283-287.
|
7. |
Sui Y, Wei Y, Zhao D. Computer-aided lung nodule recognition by SVM classifier based on combination of random undersampling and SMOTE. Comput Math Methods Med, 2015: 3686-3674.
|
8. |
Walter JE, Heuvelmans MA, Ten Haaf K, et al. Persisting new nodules in incidence rounds of the NELSON CT lung cancer screening study. Thorax, 2019, 74(3): 247-253.
|
9. |
张逊. 人工智能辅助肺癌诊疗一体化解决方案的临床实践与展望. 中国胸心血管外科临床杂志, 2019, 26(12): 1167-1170.
|
10. |
Wang S, Yang DM, Rong R, et al. Artificial intelligence in lung cancer pathology image analysis. Cancers (Basel), 2019, 11(11): 1673.
|
11. |
Espinoza JL, Dong LT. Artificial intelligence tools for refining lung cancer screening. J Clin Med, 2020, 9(12): 3860.
|
12. |
Kim MS, Park HY, Kho BG, et al. Artificial intelligence and lung cancer treatment decision: Agreement with recommendation of multidisciplinary tumor board. Transl Lung Cancer Res, 2020, 9(3): 507-514.
|
13. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
14. |
Zhang C, Sun X, Dang K, et al. Toward an expert level of lung cancer detection and classification using a deep convolutional neural network. Oncologist, 2019, 24(9): 1159-1165.
|
15. |
Setio AA, Ciompi F, Litjens G, et al. Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging, 2016, 35(5): 1160-1169.
|
16. |
Thiryayi SA, Rana DN, Narine N, et al. Establishment of an endobronchial ultrasound-guided transbronchial fine needle aspiration service with rapid on-site evaluation: 2 years experience of a single UK centre. Cytopathology, 2016, 27(5): 335-343.
|
17. |
李欣菱, 郭芳芳, 周振, 等. 基于深度学习的人工智能胸部CT肺结节检测效能评估. 中国肺癌杂志, 2019, 22(6): 336-340.
|
18. |
Walter JE, Heuvelmans MA, de Bock GH, et al. Relationship between the number of new nodules and lung cancer probability in incidence screening rounds of CT lung cancer screening: The NELSON study. Lung Cancer, 2018, 125: 103-108.
|
19. |
Setio AA, Traverso A, de Bel T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge. Med Image Anal, 2017, 42: 1-13.
|
20. |
董来东, 黄果. 基于CT影像的人工智能辅助诊断系统对肺癌诊断价值4 771例的系统评价与Meta分析. 中国胸心血管外科临床杂志, 2021. [Epub ahead of print].
|
21. |
黄双双, 张胜男, 叶君如, 等. 经皮肺活检组织病理、微生物培养及快速现场评价对肺部感染性疾病的诊断价值. 中华医学杂志, 2019, 99(42): 3340-3344.
|